题意很简单 就是欧拉函数的定义:

欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。题目求的就是φ(n)

根据 通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数

然后利用以下性质变形:

欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

                                 若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。

最后 就是 先把 题目给的 n 进行素因子分解 n=pi^mi*......*pj^mj,求φ(n)其实按照积极函数性质一 φ(n)=φ(pi^mi*)*.....*φ(pj^mj),然后分别求出 φ(pi^mi*)  根据积极函数的性质二    φ(pi^mi)  =(pi-1)*pi^(mi-1)

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long
#define LL __int64
#define eps 1e-8 //const ll INF=9999999999999; #define inf 0xfffffff using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;
//
//vector<int>G[30012]; LL p[100012],m[100012]; int main(void)
{
LL n;
while(cin>>n,n)
{
LL temp=n;
LL cntp=0;
for(ll i=2;i*i<=temp;)
{
if(n%i==0)
{
p[cntp]=i;
LL cntm=0;
while(n%i==0)
{
n/=i;
cntm++;
}
m[cntp++]=cntm;
}
else
i++;
}
if(n>1)
{
p[cntp]=n;
m[cntp++]=1;
}
LL ans=1;
for(LL i=0;i<cntp;i++)
ans*=LL(double(p[i]-1)*pow(double(p[i]),double(m[i]-1)));
cout<<ans<<endl;
}
}

poj2407 Relatives 欧拉函数基本应用的更多相关文章

  1. POJ2407–Relatives(欧拉函数)

    题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> # ...

  2. poj2407(欧拉函数模板题)

    题目链接:https://vjudge.net/problem/POJ-2407 题意:给出n,求0..n-1中与n互质的数的个数. 思路:欧拉函数板子题,先根据唯一分解定理求出n的所有质因数p1,p ...

  3. POJ 2407 Relatives(欧拉函数)

    题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...

  4. POJ 2407 Relatives 欧拉函数题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  5. POJ2407 Relatives(欧拉函数)

    题目问有多少个小于n的正整数与n互质. 这个可以用容斥原理来解HDU4135.事实上这道题就是求欧拉函数$φ(n)$. $$φ(n)=n(1-1/p_1)(1-1/p_2)\dots(1-1/p_m) ...

  6. 数论 - 欧拉函数模板题 --- poj 2407 : Relatives

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Descri ...

  7. POJ2407(欧拉函数)

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13598   Accepted: 6771 Descri ...

  8. POJ 2407 Relatives(欧拉函数入门题)

    Relatives Given n, a positive integer, how many positive integers less than n are relatively prime t ...

  9. POJ 2407:Relatives(欧拉函数模板)

    Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accept ...

随机推荐

  1. Java学习-024-获取当前类名或方法名二三文

    今天,看朋友编写程序,打印日志时,需要记录当前类的类名以及当前方法的方法名,我发现 TA 将类名或者方法名直接写死在了代码中...虽说这样可以实现记录类名和方法名,但是当有特殊情况需要修改类名或者方法 ...

  2. qt 屏幕旋转

    qt屏幕旋转的方法 参考链接 http://mikenoodle.blog.163.com/blog/static/11333522010102754154616/ http://blog.csdn. ...

  3. linux命令之tee

    功能说明:读取标准输入的数据,并将其内容输出成文件.语 法:tee [-ai][--help][--version][文件...]补充说明:tee指令会从标准输入设备读取数据,将其内容输出到标准输出设 ...

  4. LED的压降

    看具体什么LED一下是参考1.直插LED压降红:2.0-2.2V黄:1.8-2.0V绿:3.0-3.2V 额定电流约20mA. 2.贴片LED压降红:1.82-1.88V,电流5-8mA绿:1.75- ...

  5. C#中static静态变量的用法

    使用 static 修饰符声明属于类型本身而不是属于特定对象的静态成员static修饰符可用于类.字段.方法.属性.运算符.事件和构造函数,但不能用于索引器.析构函数或类以外的类型 静态全局变量 定义 ...

  6. LeetCode Combination Sum III

    原题链接在这里:https://leetcode.com/problems/combination-sum-iii/ 题目: Find all possible combinations of k n ...

  7. Object类型(对象)

    ECMAscript中的对象其实就是一组数据和功能集合.这里简单谈谈对象,复杂以后补充. 1 如何创建对象 简单创建: var box = {}; alert(box); //[object obje ...

  8. 集群中用Memcached来实现session共享

    这几天在实现nginx集群的过程中,发现session使用存在问题,登录页面后有时候需要重复登录,和开发部沟通后,决定采用memcached来实现session的共享,这也是各大型网站推荐的方式.开发 ...

  9. WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform

    参看:http://www.secdoctor.com/html/yyjs/31101.html

  10. mysql在线改表结构 pt-online-schema-change

    https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html 不锁表更改数据库表结构 pt-online-s ...