题目链接:http://lightoj.com/volume_showproblem.php?problem=1190

题意:给你一个多边形含有n个点;然后又m个查询,每次判断点(x, y)是否在多边形的内部;

射线法判断即可适用于任何(凸或凹)多边形;时间复杂度为O(n);

判断一个点是在多边形内部,边上还是在外部,时间复杂度为O(n);射线法可以正确用于凹多边形;

射线法是使用最广泛的算法,这是由于相比较其他算法而言,它不但可以正确使用在凹多边形上,而且不需要考虑精度误差问题。该算法思想是从点出发向右水平做

一条射线,计算该射线与多边形的边的相交点个数,当点不在多边形边上时,如果是奇数,那么点就一定在多边形内部,否则,在外部。

/*
射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为O(n);
射线法可以正确用于凹多边形;
射线法是使用最广泛的算法,这是由于相比较其他算法而言,它不但可以正
确使用在凹多边形上,而且不需要考虑精度误差问题。该算法思想是从点出
发向右水平做一条射线,计算该射线与多边形的边的相交点个数,当点不在
多边形边上时,如果是奇数,那么点就一定在多边形内部,否则,在外部。
*/
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int N = ;
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
//////////////////////////////////////////////////////////////////
struct point
{
double x, y;
point(double x=, double y=) : x(x), y(y){}
friend point operator - (const point& p1, const point& p2)
{
return point(p1.x-p2.x, p1.y-p2.y);
}
friend double operator ^ (const point& p1, const point& p2)
{
return p1.x*p2.y - p1.y*p2.x;
}
};
//////////////////////////////////////////////////////////////////
struct Segment
{
point s, e;
};
//////////////////////////////////////////////////////////////////
///判断一个double类型的数是 0 <0 >0;
int Sign(double x)
{
if( fabs(x) < eps )return ;
if(x > )return ;
return -;
}
//////////////////////////////////////////////////////////////////
///判断o在ab的哪边;0:o在直线ab上; >0:在左边; <0:在右边;
double cross(point o, point a, point b)
{
return ((a-o)^(b-o));
}
//////////////////////////////////////////////////////////////////
///已知abc三点在一条直线上,判断点a是否在线段bc之间;<=0:在 >0:不在;
int Between(point a, point b, point c)
{
if(fabs(b.x-c.x) > fabs(b.y-c.y))
return Sign(min(b.x, c.x)-a.x)*Sign(max(b.x, c.x)-a.x);
else
return Sign(min(b.y, c.y)-a.y)*Sign(max(b.y, c.y)-a.y);
}
//////////////////////////////////////////////////////////////////
///判断点p0和线段S上,<=0:在,1:不在;
int PointOnSegment(point p0, Segment S)
{
if(Sign(cross(S.s, S.e, p0)) == )
return Between(p0, S.s, S.e);
return ;
}
//////////////////////////////////////////////////////////////////
///求线段a和线段b的交点个数;
int SegmentCross(Segment a, Segment b)
{
double x1 = cross(a.s, a.e, b.s);
double x2 = cross(a.s, a.e, b.e);
double x3 = cross(b.s, b.e, a.s);
double x4 = cross(b.s, b.e, a.e); if(Sign(x1*x2)< && Sign(x3*x4)<) return ;
if((Sign(x1)== && Between(b.s, a.s, a.e)<=) ||
(Sign(x2)== && Between(b.e, a.s, a.e)<=) ||
(Sign(x3)== && Between(a.s, b.s, b.e)<=) ||
(Sign(x4)== && Between(a.e, b.s, b.e)<=))
return ;
return ;
}
//////////////////////////////////////////////////////////////////
///判断点p0与含有n个节点的多边形的位置关系,p数组是顶点集合;
///返回0:边上或顶点上, 1:外面, -1:里面;
int PointInPolygon(point p0, point p[], int n)
{
Segment L, S;
point temp;
L.s = p0, L.e = point(INF, p0.y);///以p0为起点的射线L; int counts = ;
p[n] = p[]; for(int i=; i<=n; i++)
{
S.s = p[i-], S.e = p[i]; if(PointOnSegment(p0, S) <= ) return ;
if(S.s.y == S.e.y) continue;///和射线平行; if(S.s.y > S.e.y) temp = S.s;
else temp = S.e; if(PointOnSegment(temp, L) == -)
counts ++;
else if(SegmentCross(L, S) == )
counts ++;
}
if(counts%) return -;
return ;
}
//////////////////////////////////////////////////////////////////
int main()
{
point p[N];
int T, tCase = , n, q;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i=; i<n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y);
scanf("%d", &q);
printf("Case %d:\n", tCase++);
for(int i=; i<=q; i++)
{
int x, y;
scanf("%d %d", &x, &y);
int ans = PointInPolygon(point(x, y), p, n);
if(ans == ) puts("No");
else puts("Yes");
}
}
return ;
}

LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)的更多相关文章

  1. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  2. luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法

    题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...

  3. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

  4. ZOJ1081 Points Within 点和多边形的位置关系

    ZOJ1081 给一个点和一个多边形 判断点在多边形内(边上)还是在多边形外 在多边形外的点引一条射线必然穿过多边形的两条边 而在多边形内的点则不一定. 当然凹多边形有特殊情况 但是总能找到对应位置关 ...

  5. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  6. POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置关系

    POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置 Description Calculate the number of toys th ...

  7. POJ 2318 /// 判断点与直线的位置关系

    题目大意: n块玩具箱隔板 m个玩具落地点 给定玩具箱的左上和右下两个端点 接下来给定n块隔板的上点的x和下点的x(因为y就是玩具箱的上下边缘) 接下来给定m个玩具落地点 输出n+1个区域各有的玩具数 ...

  8. Segments---poj3304(判断直线与线段的位置关系)

    题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...

  9. UVA 10256 The Great Divide (凸包,多边形的位置关系)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34148 [思路] 凸包 求出红蓝点的凸包,剩下的问题就是判断两个凸 ...

随机推荐

  1. HDU 2531 (BFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2531 题目大意: 你的身体占据多个点.每次移动全部的点,不能撞到障碍点,问撞到目标点块(多个点)的最 ...

  2. Android下载文件到SD卡

    HttpURLConnection 上传方式: 尝试理解这两种流的区别: InputStreamReader 的读取方式: //创建一个URL对象 URL url = new URL(urlStrin ...

  3. Codeforces Round #213 (Div. 2) A. Good Number

    #include <iostream> #include <vector> using namespace std; int main(){ ; cin >> n ...

  4. NOIP200406合并果子

    试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.    每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之 ...

  5. IOS 今天学到太多的知识了,赶快记录下来

    TabBarController 修改tabbar的背景颜色和选中时候的颜色: func application(application: UIApplication, didFinishLaunch ...

  6. CSS3:过渡大全

    代码 地址:http://jsbin.com/moquyesumi/edit?html,output <!DOCTYPE HTML> <html> <head> & ...

  7. 【转】JavaScript顶级对象参考模型

  8. ArcGISDynamicMapServiceLayer 实现条件过滤

    <html>   <head>   <meta http-equiv="Content-Type" content="text/html; ...

  9. [IT思考]技术领先对手多少算好?

    坦白讲,很多做技术的公司,总是觉得技术越“牛”越好.但是,历史也曾经出现过,很多公司技术的确很棒,但是市场反响一般(待补充案例).结果可想而知. 要知道,每一个新技术,尤其是业界领先的新技术,需要不少 ...

  10. Javascript 笔记与总结(1-2)词法分析

    词法分析,按顺序分析 3 样: 第 1 步:先分析参数 第 2 步:再分析变量声明 第 3 步:再分析函数声明 一个函数能使用的局部变量,就从上面 3 步分析而来. 具体步骤: 0:函数运行前的瞬间, ...