Conjugate prior relationships

The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.

Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.

These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.

Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams
 on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting
.

Parameterizations

Let C(n, k)
denote the binomial
coefficient
(n, k).

The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.

The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.

The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.

The Bernoulli distribution has probability of success p.

The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).

The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).

The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).

The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.

The normal distribution parameterized in terms of precision τ (τ = 1/σ2)

has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).

The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.

Posterior parameters

For each sampling distribution, assume we have data x1, x2,
…, xn.

If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.

If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.

If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.

If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).

If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).

If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.

If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).

If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.

References

A
compendium of conjugate priors
 by Daniel Fink.

See also Wikipedia’s article on conjugate
priors
.

Conjugate prior relationships的更多相关文章

  1. 共轭先验(conjugate prior)

    共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...

  2. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  3. 转:Conjugate prior-共轭先验的解释

    Conjugate prior-共轭先验的解释    原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...

  4. Gibbs sampling

    In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...

  5. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  6. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  7. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  8. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. Android Studio使用中的异常

    Android studio教程:[4]真机测试 1.连不上手机 Android Studio识别不了手机(最后还是恢复成勾中的状态),重启,Android Studio连接真机没反应? 2.连上手机 ...

  2. C语言 百炼成钢13

    //题目37:将一个数组逆序输出.用第一个与最后一个交换. #include<stdio.h> #include<stdlib.h> #include<math.h> ...

  3. ORACLE SELECT INTO NO_DATA_FOUND问题

    存储过程中使用了类似如下语句: SELECT col INTO v_col FROM t_table 当查询不到记录时,会出现“数据未发现”的异常 解决方法: (1)使用MAX函数 SELECT MA ...

  4. [CareerCup] 11.6 Search a 2D Matrix 搜索一个二维矩阵

    11.6 Given an M x N matrix in which each row and each column is sorted in ascending order, write a m ...

  5. 学习bash

    工作8年,前6年基本是Windows环境下,也就是个鼠标党:两年前换工作开始用linux,也就开始了领略了命令行的强大,无论是直接在命令行组合命令,也还写几行简单的shell脚本,其能完成的功能往往令 ...

  6. diff: /../Podfile.lock: No such file or directory

    从github上下载源码运行会报错:问题1描述: diff: /../Podfile.lock: No such file or directory diff: /Manifest.lock: No ...

  7. javascript 事件传播与事件冒泡,W3C事件模型

    说实话笔者在才工作的时候就听说了什么"事件冒泡",弄了很久才弄个大概,当时理解意思是子级dom元素和父级dom元素都绑定了相同类型的事件,这时如果子级事件触发了父级也会触发,然后这 ...

  8. linux中的服务

    一.服务分类 独立的服务比如像httpd服务,用户可以直接来访问.并且独立服务常驻内存.而xinetd服务是一个服务管理器,它是常驻内存的,它下面有很多子服务,但这些子服务并不长驻内存.当用户想要使用 ...

  9. ThinkPHP之视图模版的使用

    用户发起一个请求后,服务器应该返回一个页面,而页面是由我们的视图层来控制的. 一.修改控制器 <?php namespace Home\Controller; use Think\Control ...

  10. 团队项目NABCD模型的需求分析

    团队项目NABCD模型的需求分析 NABCD模型的介绍 Need(需求)-现在市场上未被满足但又急需满足的客户需求是什么?Approach(方法)-要满足这种需求,我能够提出什么独特的方法吗?Bene ...