Conjugate prior relationships

The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.

Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.

These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.

Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams
 on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting
.

Parameterizations

Let C(n, k)
denote the binomial
coefficient
(n, k).

The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.

The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.

The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.

The Bernoulli distribution has probability of success p.

The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).

The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).

The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).

The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.

The normal distribution parameterized in terms of precision τ (τ = 1/σ2)

has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).

The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.

Posterior parameters

For each sampling distribution, assume we have data x1, x2,
…, xn.

If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.

If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.

If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.

If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).

If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).

If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.

If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).

If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.

References

A
compendium of conjugate priors
 by Daniel Fink.

See also Wikipedia’s article on conjugate
priors
.

Conjugate prior relationships的更多相关文章

  1. 共轭先验(conjugate prior)

    共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...

  2. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  3. 转:Conjugate prior-共轭先验的解释

    Conjugate prior-共轭先验的解释    原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...

  4. Gibbs sampling

    In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...

  5. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  6. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  7. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  8. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. [转]有关WorldWind1.4的worldwind.cs窗口设计器打开错误的解决方法

    Solution for Designer error when opening WorldWind.cs in WW1.4.0 When I load the WW project in my Vi ...

  2. 基于Html5的移动端开发框架的研究

    下面统计信息部分来自网络,不代表个人观点.请大家参考.         基于Html5移动端开发框架调查                                   序号 框架 简介 优点 缺 ...

  3. scrapy 登录

    说明: 本文参考了官网文档,以及stackoverflow的几个问题 注意: 下面这个爬虫不能实际运行!我只是用它来展示登录,以及之后如何处理. 方式一:FormRequest import scra ...

  4. 每日一SQL-善用DATEADD和DATEDIFF

    转自:http://www.dotblogs.com.tw/lastsecret/archive/2010/10/04/18097.aspx 上個星期去Tech-Day聽了幾場有趣的課,其中一堂是楊志 ...

  5. CSS 动画之九-会呼吸的信封

    新年已经到来,各个网站都举办着各种不同类型的活动,'会呼吸的信封'有可能就是你遇到的其中一种.其实就是一个信封的样式,在封口处加上开合开合的动画效果,吸引用户去打开这个信封,点击后可能会送红包,优惠券 ...

  6. 用python简单处理图片(5):图像直方图

    我们先来看两个函数reshape和flatten: 假设我们先生成一个一维数组: vec=np.arange(15) print vec 显示为: [ 0 1 2 3 4 5 6 7 8 9 10 1 ...

  7. C# GC 垃圾回收机制

    今天来谈谈C# 的GC ,也就是垃圾回收机制,非常的受教,总结如下 首先:谈谈托管,什么叫托管,我的理解就是托付C# 运行环境帮我们去管理,在这个运行环境中可以帮助我们开辟内存和释放内存,开辟内存一般 ...

  8. 【WEB前端经验之谈】时间一年半,或沉淀、或从零开始。

    距上次写博客还是有点久了,中间有个写的念头,不过由于不知道写什么也就放弃了. 14年4月份第一份前端工作到现在也有一年半之久了,自己对前端的热爱相对于一年前是有过之而无不及.一年半的时间里自己也成长了 ...

  9. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  10. dp式子100个……

    1.        资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.        资源问题2------01背包问题F[I,j]:=max(f[i- ...