http://www.lydsy.com/JudgeOnline/problem.php?id=1295

咳咳。。此题我不会做啊。。一开始认为是多源,可是有移除物品的操作,所以不行。

此题的思想很巧妙!

我们不妨将问题转换一下,对于一个点到另一个点,我们只需算出到达这个点最少需要移除多少个障碍,然后用题目给的障碍判断是否可行,然后暴力算出可行的点之间的欧几里得距离就行了orz。

T_T

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define read(a) a=getnum()
#define print(a) printf("%d", a)
inline int getnum() { int ret=0; char c; for(c=getchar(); c<'0' || c>'9'; c=getchar()); for(; c>='0' && c<='9'; c=getchar()) ret=ret*10+c-'0'; return ret; } const int N=35;
int d[N][N], a[N][N], vis[N][N], ans, n, m;
int dx[]={-1, 1, 0, 0}, dy[]={0, 0, -1, +1};
struct qu{ int x, y; } q[N*N*2];
int front, tail; void spfa(const int &s, const int &t) {
int x, y;
CC(vis, 0); CC(d, 0x7f);
d[s][t]=front=tail=0;
vis[s][t]=1; q[tail].x=s, q[tail++].y=t;
while(front<tail) {
x=q[front].x; y=q[front++].y;
rep(i, 4) if(x+dx[i] && x+dx[i]<=n && y+dy[i] && y+dy[i]<=m && d[x][y]+a[x+dx[i]][y+dy[i]]<d[x+dx[i]][y+dy[i]]) {
d[x+dx[i]][y+dy[i]]=d[x][y]+a[x+dx[i]][y+dy[i]];
if(!vis[x+dx[i]][y+dy[i]]) {
vis[x+dx[i]][y+dy[i]]=1;
q[tail].x=x+dx[i]; q[tail++].y=y+dy[i];
}
}
vis[x][y]=0;
}
} int main() {
read(n); read(m);
int t=getnum();
char c;
for1(i, 1, n) for1(j, 1, m) {
for(c=getchar(); c<'0' || c>'9'; c=getchar());
a[i][j]=c-'0';
}
int t1;
for1(i, 1, n) for1(j, 1, m) {
spfa(i, j);
t1=t; if(a[i][j]) --t1;
for1(x, 1, n) for1(y, 1, m) if(d[x][y]<=t1)
ans=max(ans, (i-x)*(i-x)+(j-y)*(j-y));
}
printf("%.6lf", sqrt((double)ans));
return 0;
}

Description

windy有一块矩形土地,被分为 N*M 块 1*1 的小格子。 有的格子含有障碍物。 如果从格子A可以走到格子B,那么两个格子的距离就为两个格子中心的欧几里德距离。 如果从格子A不可以走到格子B,就没有距离。 如果格子X和格子Y有公共边,并且X和Y均不含有障碍物,就可以从X走到Y。 如果windy可以移走T块障碍物,求所有格子间的最大距离。 保证移走T块障碍物以后,至少有一个格子不含有障碍物。

Input

输入文件maxlength.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示空格子,'1'表示该格子含有障碍物。

Output

输出文件maxlength.out包含一个浮点数,保留6位小数。

Sample Input

【输入样例一】
3 3 0
001
001
110

【输入样例二】
4 3 0
001
001
011
000

【输入样例三】
3 3 1
001
001
001

Sample Output

【输出样例一】
1.414214

【输出样例二】
3.605551

【输出样例三】
2.828427

HINT

20%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 0 。
40%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 2 。
100%的数据,满足 1 <= N,M <= 30 ; 0 <= T <= 30 。

Source

【BZOJ】1295: [SCOI2009]最长距离(spfa+暴力)的更多相关文章

  1. BZOJ 1295: [SCOI2009]最长距离 spfa

    1295: [SCOI2009]最长距离 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1295 Description windy有一块 ...

  2. bzoj 1295: [SCOI2009]最长距离

    题目链接 1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1165  Solved: 619[Submit][ ...

  3. BZOJ 1295: [SCOI2009]最长距离( 最短路 )

    把障碍点看做点(边)权为1, 其他为0. 对于每个点跑spfa, 然后和它距离在T以内的就可以更新答案 ------------------------------------------------ ...

  4. [BZOJ 1295][SCOI2009]最长距离(SPFA+暴力)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1295 分析:很巧妙的一道spfa从搜索的角度是搜索在所有1中搜索删除哪T个1,对整个图询问,这 ...

  5. bzoj 1295: [SCOI2009]最长距离 暴力+bfs最短路

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1295 题解: 对每个点暴力跑一遍bfs,看能够到达的最远位置,这里如果有障碍物则距离为1 ...

  6. 1295: [SCOI2009]最长距离

    1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 960  Solved: 498[Submit][Status ...

  7. bzoj 1295 1295: [SCOI2009]最长距离

    思路:对于每个点出发bfs做一次dp, dp[ i ][ j ][ k ] 表示从枚举的该点能不能经过k个障碍物到达(i , j). #include<bits/stdc++.h> #de ...

  8. 1295. [SCOI2009]最长距离【最短路】

    Description windy有一块矩形土地,被分为 N*M 块 1*1 的小格子. 有的格子含有障碍物. 如果从格子A可以走到格子B,那么两个格子的距离就为两个格子中心的欧几里德距离. 如果从格 ...

  9. [BZOJ1295][SCOI2009]最长距离 最短路+枚举

    1295: [SCOI2009]最长距离 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1683  Solved: 912[Submit][Statu ...

随机推荐

  1. Linux MySQL差异备份技巧

    MSSQL差异备份使用技巧 15 Apr 2013 所谓的差异备份,就是只备份最近一次备份之后到此次备份之前所增加的那一部分数据.打个比方我第N次备份后数据库存放的内容是ABCD,然后我第N+1次 备 ...

  2. 【Django】Django 直接执行原始SQL 如何防止SQL注入 ?

    代码示例: #错误--不要直接格式化字符串 query = 'SELECT * FROM myapp_person WHERE last_name = %s' % lname Person.objec ...

  3. spring中context:property-placeholder/元素

    1.有些参数在某些阶段中是常量 比如 :a.在开发阶段我们连接数据库时的连接url,username,password,driverClass等 b.分布式应用中client端访问server端所用的 ...

  4. tcp/ip程序

    #include<stdio.h> #include<stdlib.h> #include<errno.h> #include<string.h> #i ...

  5. 1.10 编程之美-双线程下载[double threads to download]

    [本文链接] http://www.cnblogs.com/hellogiser/p/double-threads-to-download-and-write.html [题目] 网络上下载数据,然后 ...

  6. Android app主线程UI更新间歇性崩溃的问题

    对App进行开发测试时,偶尔出现app崩溃的问题.日志如下: 10-25 18:44:52.935 15290-15290/com.zzq.cnblogs E/AndroidRuntime﹕ FATA ...

  7. iOS constraint被应用于view上的时间

    在viewdidload时,constraint是没有被应用的,之后在layoutSubviews时,系统应用了constraint.但是我感觉在viewWillLayoutSubviews函数时就已 ...

  8. HDU4870 Rating(概率)

    第一场多校,感觉自己都跳去看坑自己的题目里去了,很多自己可能会比较擅长一点的题目没看,然后写一下其中一道概率题的题解吧,感觉和自己前几天做的概率dp的思路是一样的.下面先来看题意:一个人有两个TC的账 ...

  9. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  10. OC内存管理(MRC)

    首先说明一下几块存储区域: 栈区(局部变量.函数参数值) 堆区(对象.手动申请/释放内存) BSS区(未初始化的全局变量.未初始化的静态数据) 常量区(字符串常量以及初始化后的全局变量.初始化后的静态 ...