大数开方 ACM-ICPC 2018 焦作赛区网络预赛 J. Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know which one to choose, so they use a way to make decisions.
They have several boxes of candies, and there are ii candies in the i^{th}i
th
box, each candy is wrapped in a piece of candy paper. Jessie opens the candy boxes in turn from the first box. Every time a box is opened, Jessie will take out all the candies inside, finish it, and hand all the candy papers to Justin.
When Jessie takes out the candies in the N^{th}N
th
box and hasn't eaten yet, if the amount of candies in Jessie's hand and the amount of candy papers in Justin's hand are both perfect square numbers, they will choose Arena of Valor. If only the amount of candies in Jessie's hand is a perfect square number, they will choose Hearth Stone. If only the amount of candy papers in Justin's hand is a perfect square number, they will choose Clash Royale. Otherwise they will choose League of Legends.
Now tell you the value of NN, please judge which game they will choose.
Input
The first line contains an integer T(1 \le T \le 800)T(1≤T≤800) , which is the number of test cases.
Each test case contains one line with a single integer: N(1 \le N \le 10^{200})N(1≤N≤10
200
) .
Output
For each test case, output one line containing the answer.
样例输入 复制
4
1
2
3
4
样例输出 复制
Arena of Valor
Clash Royale
League of Legends
Hearth Stone
题目来源
先看看 大数开放
手算开方的原理是利用(10a + b)(10a + b)= 100 a^2 + 20ab + b^2,
先把一个大整数从最低位开始分解成两个一节的。 eg. 12,34,56,78,90
①首先先看最前面一节,小于等于12的一个最大的平方数是9,先取a = 3,此时余数是3,将下一节加入余数,得到r = 3,34
②接下来求最大的 b 使得 20ab + b^2 <= 334, 这里先将a 代进去,得到b = 5,此时余数是 9
③此时需要将a 用 10a + b 取代,所以这时候a = 35,讲下一节加入r ,r = 9,56
接着不断重复重复②和③这两个步骤。
这边顺便再写两步,此时再去找最大的 b 使得 20ab + b^2 <= 956,将a = 35代入,求得 b = 1, 然后r = 2,55,然后 a = 351,将后一节加入r, r = 2,55,78.。。。。。
大数开放解决后 就直接上代码了
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
const int MOD = 2;
const int D_MOD = 100;
const int MAXN = 400 + 5;
int n;
char str[MAXN];
int getInt(char *str, int len)
{
int res = 0;
for(int i = 0; i < len; ++ i)
res = res * 10 + (str[i] - '0');
return res;
}
class BigNumber
{
public:
int intLen;
int decimal[MAXN];
BigNumber()
{
this->intLen = 1;
memset(this->decimal, 0, sizeof(this->decimal));
}
BigNumber(char *str)
{
//初始化
this->intLen = 1;
int intLen = (int)strlen(str);
this->intLen = (intLen + MOD - 1) / MOD;
memset(this->decimal, 0, sizeof(this->decimal));
if(intLen & 1)
{
this->decimal[this->intLen - 1] = getInt(str, 1);
++str;
}
else
{
this->decimal[this->intLen - 1] = getInt(str, 2);
str += 2;
}
for(int i = this->intLen - 2; i >= 0; -- i, str += 2)
this->decimal[i] = getInt(str, 2);
}
bool operator > (const BigNumber &x) const
{
if(this->intLen == x.intLen)
for(int i = x.intLen - 1; i >= 0; -- i)
if(this->decimal[i] != x.decimal[i])
return this->decimal[i] > x.decimal[i];
return this->intLen > x.intLen;
}
bool operator == (const BigNumber &x) const
{
if(this->intLen == x.intLen)
{
for(int i = 0; i < x.intLen; ++ i)
if(this->decimal[i] != x.decimal[i])
return false;
return true;
}
return (this->intLen == x.intLen);
}
//加上一个小于D_MOD的数
BigNumber operator + (int x) const
{
int tt;
BigNumber bg;
bg.intLen = this->intLen;
for(int i = 0; i < this->intLen; ++ i)
{
tt = this->decimal[i] + x;
bg.decimal[i] = tt % D_MOD;
x = tt / D_MOD;
}
if(x)
bg.decimal[bg.intLen++] = x;
return bg;
}
//保证了差为正数时才可调用
BigNumber operator - (const BigNumber & x) const
{
BigNumber bg;
bg.intLen = this->intLen;
for(int i = 0; i < bg.intLen; ++ i)
bg.decimal[i] = this->decimal[i] - x.decimal[i];
for(int i = 0; i < bg.intLen - 1; ++ i)
if(bg.decimal[i] < 0)
{
--bg.decimal[i + 1];
bg.decimal[i] += D_MOD;
}
for(int i = bg.intLen - 1; i > 0; -- i)
if(bg.decimal[i] == 0)
--bg.intLen;
else
break;
return bg;
}
//乘一个小于D_MOD的数
BigNumber operator * (int x) const
{
BigNumber bg;
if(x == 0)
return bg;
int tt, temp = 0;
bg.intLen = this->intLen;
for(int i = 0; i < this->intLen; ++ i)
{
tt = this->decimal[i] * x + temp;
bg.decimal[i] = tt % D_MOD;
temp = tt / D_MOD;
}
while(temp)
{
bg.decimal[bg.intLen++] = temp % D_MOD;
temp /= D_MOD;
}
return bg;
}
//移位操作,乘以D_MOD
void MoveOneStep()
{
for(int i = this->intLen - 1; i >= 0; -- i)
this->decimal[i + 1] = this->decimal[i];
if(this->decimal[this->intLen] != 0)
++this->intLen;
}
void OutPut()
{
printf("%d", this->decimal[this->intLen - 1]);
for(int i = this->intLen - 2; i >= 0; -- i)
printf("%02d", this->decimal[i]);
putchar('\n');
}
};
int Find_b(const BigNumber &a, const BigNumber &r)
{
BigNumber temp;
for(int b = 1; b < 10; ++ b)
{
temp = a * (20 * b) + b * b;
if(temp > r)
return b - 1;
else if(r == temp)
return b;
}
return 9;
}
bool Sqrt(const BigNumber &x)
{
BigNumber a, r;
int b, tLen = x.intLen - 1;
a.decimal[0] = (int)sqrt(x.decimal[tLen] + 0.5);
r.decimal[0] = x.decimal[tLen--] - a.decimal[a.intLen - 1] * a.decimal[a.intLen - 1];
while(tLen >= 0)
{
r.MoveOneStep();
r.decimal[0] = x.decimal[tLen--];
b = Find_b(a, r);
r = r - (a * (20 * b) + b * b);
a = a * 10 + b;
}
if(r.intLen==1&&r.decimal[0]==0)
return true;
return false;
}
const int numlen = 405; // 位数
int max(int a, int b) { return a>b?a:b; }
struct bign {
int len, s[numlen];
bign() {
memset(s, 0, sizeof(s));
len = 1;
}
bign(int num) {
if(num==0)
{
len=1;s[0]=0;return;
}
len = 0;
while(num>0)
{
s[len++]=num%10;
num/=10;
}
}
bign operator = (const char *num) {
len = strlen(num);
while(len > 1 && num[0] == '0') num++, len--;
for(int i = 0;i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
void deal() {
while(len > 1 && !s[len-1]) len--;
}
bign operator + (const bign &a) const {
bign ret;
ret.len = 0;
int top = max(len, a.len) , add = 0;
for(int i = 0;add || i < top; i++) {
int now = add;
if(i < len) now += s[i];
if(i < a.len) now += a.s[i];
ret.s[ret.len++] = now%10;
add = now/10;
}
return ret;
}
bign operator - (const bign &a) const {
bign ret;
ret.len = 0;
int cal = 0;
for(int i = 0;i < len; i++) {
int now = s[i] - cal;
if(i < a.len) now -= a.s[i];
if(now >= 0) cal = 0;
else {
cal = 1; now += 10;
}
ret.s[ret.len++] = now;
}
ret.deal();
return ret;
}
bign operator * (const bign &a) const {
bign ret;
ret.len = len + a.len;
for(int i = 0;i < len; i++) {
for(int j = 0;j < a.len; j++)
ret.s[i+j] += s[i]*a.s[j];
}
for(int i = 0;i < ret.len; i++) {
ret.s[i+1] += ret.s[i]/10;
ret.s[i] %= 10;
}
ret.deal();
return ret;
}
bign operator / (const int a) const {
bign ret;
int cur = 0;
ret.len = len;
for(int i = len-1;i >= 0; i--) {
cur = cur*10+s[i];
while(cur >= a) {
ret.s[i]=cur/a;
cur %= a;
}
}
ret.deal();
return ret;
}
bool operator < (const bign &a) const {
if(len != a.len) return len < a.len;
for(int i = len-1;i >= 0; i--) if(s[i] != a.s[i])
return s[i] < a.s[i];
return false;
}
bool operator > (const bign &a) const { return a < *this; }
bool operator <= (const bign &a) const { return !(*this > a); }
bool operator >= (const bign &a) const { return !(*this < a); }
bool operator == (const bign &a) const { return !(*this > a || *this < a); }
bool operator != (const bign &a) const { return *this > a || *this < a; }
string str() const {
string ret = "";
for(int i = 0;i < len; i++) ret = char(s[i] + '0') + ret;
return ret;
}
};
bign o1,o2;
int main()
{
char str1[10]="1";
o1=str1;
str1[0]='2'; str1[1]='\n';
o2=str1;
int T;
cin>>T;
while(T--)
{
scanf("%s",str);
int len = strlen(str);
if(len == 1)
{
if(str[0]=='1')
{
cout<<"Arena of Valor"<<endl;
continue;
}
if(str[0]=='2')
{
cout<<"Clash Royale"<<endl;
continue;
}
}
bign n ;
n = str;
bign n1 = n-o1;
bign sn1 = (n*n1)/2;
BigNumber x(str);
for(int i = 0; i < sn1.len; i++)
{
str[sn1.len-1-i]=sn1.s[i]+'0';
}
str[sn1.len]='\0';
BigNumber y(str);
bool a1 = Sqrt(x);
bool a2 = Sqrt(y);
if(a1&&a2)cout<<"Arena of Valor"<<endl;
else if(a1) cout<<"Hearth Stone"<<endl;
else if(a2) cout<<"Clash Royale"<<endl;
else cout<<"League of Legends"<<endl;
}
return 0;
}
/*
Arena of Valor 1&1
Clash Royale 0&1
League of Legends 0&0
Hearth Stone 1&0
*/
大数开方 ACM-ICPC 2018 焦作赛区网络预赛 J. Participate in E-sports的更多相关文章
- ACM-ICPC 2018 焦作赛区网络预赛 J Participate in E-sports(大数开方)
https://nanti.jisuanke.com/t/31719 题意 让你分别判断n或(n-1)*n/2是否是完全平方数 分析 二分高精度开根裸题呀.经典题:bzoj1213 用java套个板子 ...
- ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship
There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...
- ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room
Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...
- ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)
Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...
随机推荐
- S0.2 灰度图
目录 灰度图定义 灰度图优点 RGB转灰度算法(OpenCV3) 量化 算法公式 OpenCV自带函数实现 综合比较 灰度图定义 对于单色(灰度)图像而言,每个像素的亮度用一个数值来表示,通常数值范围 ...
- 如何使用JavaScript实现纯前端读取和导出excel文件
js-xlsx 介绍 由SheetJS出品的js-xlsx是一款非常方便的只需要纯JS即可读取和导出excel的工具库,功能强大,支持格式众多,支持xls.xlsx.ods(一种OpenOffice专 ...
- mysql having和where的区别
having子句与where子句一样,都是用于条件判断的. 区别1 where是判断数据从磁盘读入内存的时候 having是判断分组统计之前的所有条件 区别原理 区别2 having子句中可以使用字段 ...
- Lecture5_1&5_2.随机变量的数字特征(数学期望、方差、协方差)
一.数学期望 1.离散型随机变量的数学期望 设X为离散随机变量,其概率分布为:P(X=xk)=pk 若无穷级数$\sum_{k=1}^{+\infty}x_kp_k$绝对收敛 (即满足$\sum_{k ...
- 【转载】Fiddler工具使用介绍(一)
原文https://www.cnblogs.com/miantest/p/7289694.html(一) https://www.cnblogs.com/miantest/p/7290176.html ...
- error lnk1158 无法运行rc.exe
找到C:\Program Files (x86)\Windows Kits\8.0\bin\在运行一下rc.exe和rcdll.dll拷贝到D:\Soft\VS2015\VC\bin目录下.
- Git 提示fatal: remote origin already exists 错误解决办法
今天使用git 添加远程github仓库的时候提示错误:fatal: remote origin already exists. 最后找到解决办法如下: 1.先删除远程 Git 仓库 $ git re ...
- POI导出excel列宽自适应
让单元格宽度随着列和单元格值的宽度自适应: //存储最大列宽 Map<Integer, Integer> maxWidth = new HashMap<>(); // 将列头设 ...
- 反射的应用,jdbc封装
实现在Java中查询数据库并保存在Java中 1.创建Dept类(要查找的类) package cn.ljs; public class Dept { private int deptno; priv ...
- centos禁ping
Linux默认是允许Ping响应的,系统是否允许Ping由2个因素决定的:A.内核参数,B.防火墙,需要2个因素同时允许才能允许Ping,2个因素有任意一个禁Ping就无法Ping. 具体的配置方法如 ...