【AtCoder】【思维】【置换】Rabbit Exercise
题意:
有n只兔子,i号兔子开始的时候在a[i]号位置。每一轮操作都将若干只兔子依次进行操作:
加入操作的是b[i]号兔子,就将b[i]号兔子移动到关于b[i]-1号兔子现在所在的位置对称的地方,或者是关于b[i]+1号兔子现在所在的位置对称的地方,两者是等概率的。现在给出每一轮操作的兔子编号及顺序,要你求k轮之后每只兔子的位置的期望。保证操作的兔子编号为2~n-1。
数据范围:
1<=n,每一轮的操作数量<=100000
1<=k<=10^18
思路:
看见k这么大,肯定第一反应是有某种周期。
然后来看单独的一轮操作,是一个简单的求解期望的问题。因为选择b[i]-1号兔子和b[i]+1号兔子是等概率的,那么当前这只兔子的期望位置也就是确定的,也就是\(\dfrac{2a[b[i]-1]-a[b[i]]+2a[b[i]+1]-a[b[i]]}{2}=a[b[i]+1]+a[b[i]-1]-a[b[i]]\)。那么对于单轮的操作来说,就变得简单了,就是按顺序将每个兔子的位置变为上面所说的值。
那么考虑有多轮的情况。参考了网上的题解之后,原来是一个很妙的做法,考试的时候我当然没有想到╮(╯﹏╰)╭
观察改变之前的序列与查分之后的序列的差分数组。
之前:a[1],a[2],a[3] -> 差分数组:a[1],a[2]-a[1],a[3]-a[2]
之后:a[1],a[1]+a[3]-a[2],a[3] -> 差分数组:a[1],a[3]-a[2],a[2]-a[1]
神奇的事情发生了!!我们发现差分数组中,竟然是两个位置,也就是i和i+1对换了位置!!
那么到了这里,也就不难发现这就是置换了。将每一个循环求出来,然后对于每一个循环,假设循环长度为T,那么让k%=T,然后讲这个循环涉及到的所有的位置的答案都求出来,然后就做到O(n)。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define MAXN 100000
using namespace std;
typedef long long LL;
vector<int> turns[MAXN+5];//用vector来记录每一个循环
LL k;
int n,m,tcnt=0,chs[MAXN+5],id[MAXN+5],id2[MAXN+5];
//id存的是单次操作之后的状态,id2存的是k次操作之后的操作
LL x[MAXN+5],a[MAXN+5];
LL a2[MAXN+5],x2[MAXN+5];
//a2是之后的差分序列,x2是之后的兔子位置
bool vis[MAXN+5];
int main()
{
// freopen("rabbit.in","r",stdin);
// freopen("rabbit.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&x[i]),id[i]=i;
for(int i=1;i<=n;i++)
a[i]=x[i]-x[i-1];
scanf("%d %lld",&m,&k);
for(int i=1;i<=m;i++)
scanf("%d",&chs[i]),swap(id[chs[i]],id[chs[i]+1]);
for(int i=1;i<=n;i++)
{
int p=i;
if(vis[p]==true)
continue;
tcnt++;
while(vis[p]==false)
{
vis[p]=true;
turns[tcnt].push_back(p);
p=id[p];
}
}
for(int i=1;i<=tcnt;i++)
{
int T=(int)turns[i].size();//对于每一个循环单独计算
int pos=k%T;
//处理出开头位置所对应的最终位置,然后向后挪到来求出这个循环里的其他元素所对应的答案
for(int j=0,p=pos;j<(int)turns[i].size();j++,p=(p+1)%T)
id2[turns[i][j]]=turns[i][p];
}
for(int i=1;i<=n;i++)
a2[i]=a[id2[i]];
for(int i=1;i<=n;i++)
x2[i]=x2[i-1]+a2[i];
for(int i=1;i<=n;i++)
printf("%lld.0\n",x2[i]);//因为题目要求,强行加一个.0
return 0;
}
【AtCoder】【思维】【置换】Rabbit Exercise的更多相关文章
- AGC006 C Rabbit Exercise——思路(置换)
题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 选了 i 位置后 x[ i ] = x[ i-1 ] + x[ i+1 ] - x[ i ] . ...
- AGC600 C Rabbit Exercise —— 置换
题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 考虑 \( i \) 号兔子移动后位置的期望,是 \( x_{i+1} + x_{i-1} - ...
- AtCoder Grand Contest 006 C:Rabbit Exercise
题目传送门:https://agc006.contest.atcoder.jp/tasks/agc006_c 题目翻译 数轴上有\(N\)只兔子,从\(1\)到\(N\)编号,每只兔子初始位置是\(x ...
- 【AGC006C】Rabbit Exercise 置换
题目描述 有\(n\)只兔子站在数轴上.为了方便,将这些兔子标号为\(1\ldots n\).第\(i\)只兔子的初始位置为\(a_i\). 现在这些兔子会按照下面的规则做若干套体操.每一套体操由\( ...
- AtCoder Grand Contest 006 (AGC006) C - Rabbit Exercise 概率期望
原文链接https://www.cnblogs.com/zhouzhendong/p/AGC006C.html 题目传送门 - AGC006C 题意 有 $n$ 个兔子,从 $1$ 到 $n$ 编号, ...
- [Atcoder Grand 006 C] Rabbit Exercise 解题报告 (期望)
题目链接:https://www.luogu.org/problemnew/show/AT2164 https://agc006.contest.atcoder.jp/tasks/agc006_c 题 ...
- [AT2164] [agc006_c] Rabbit Exercise
题目链接 AtCoder:https://agc006.contest.atcoder.jp/tasks/agc006_c 洛谷:https://www.luogu.org/problemnew/sh ...
- 题解-AtCoder-agc006C Rabbit Exercise
Problem AtCoder & bzoj 题意:数轴上有\(n\)个点(初始坐标均为整数),编号为\(1\)~\(n\).给出\(m\)个操作. 每个操作会选定点\(a\),然后随机在点\ ...
- 【做题】agc006C - Rabbit Exercise——模型转换
原文链接https://www.cnblogs.com/cly-none/p/9745177.html 题意:数轴上有\(n\)个点,从\(1\)到\(n\)编号.有\(m\)个操作,每次操作给出一个 ...
随机推荐
- pm2自动部署
配置pm2自动部署前,请确保已经能够ssh免密登录服务器. 一.创建ecosystem.json { "apps" : [{ "name" : "HT ...
- Docker容器进入的4种方式
Docker容器进入的4种方式 $ sudo docker ps $ sudo docker exec -it 775c7c9ee1e1 /bin/bash 在使用Docker创建了容器之后,大家比较 ...
- ASP.NET知识点汇总
一 ,html属性20181113常用的居中方法1 text-align2 float3 margin (margin-left matgin-right margin-bottom margin-t ...
- 应用调试(四)系统调用SWI
目录 应用调试(四)系统调用SWI 系统调用 SWI代码片段分析 分析sys_write 构造sys_hello 应用程序调用SWI 嵌入汇编语法 测试APP 参考 title: 应用调试(四)系统调 ...
- openstack项目【day23】:云计算介绍(一)
本节内容 为何选择云计算/云计算之前遇到的问题 什么是云计算 云服务模式 云应用形式 传统应用与云感知应用 一:为何选择云计算/云计算之前遇到的问题 一.有效解决硬件单点故障问题 单点故障是指某个硬件 ...
- MongoDB 3.6.9 集群搭建 - 切片+副本集
1. 环境准备 在Mongo的官网下载Linux版本安装包,然后解压到对应的目录下:由于资源有限,我们采用Replica Sets + Sharding方式来配置高可用.结构图如下所示: 这里我说明下 ...
- java多图片上传--前端实现预览--图片压缩 、图片缩放,区域裁剪,水印,旋转,保持比例。
java多图片上传--前端实现预览 前端代码: https://pan.baidu.com/s/1cqKbmjBSXOhFX4HR1XGkyQ 解压后: java后台: <!--文件上传--&g ...
- Centos7安装vsftpd (FTP服务器)
Centos7安装vsftpd (FTP服务器) 原文链接:https://www.jianshu.com/p/9abad055fff6 TyiMan 关注 2016.02.06 21:19* 字数 ...
- [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势
设有一均匀分布着电荷的半径为 $R$ 的球面, 其电荷密度 (即单位面积上的电荷量) 为 $\sigma$. 试求该球面所形成电场的电场强度及电势. 解答: 设 $P$ 距圆心的距离为 $r$, 不妨 ...
- 部署自己的服务器ubuntu
一直都是在公司的服务器上工作,想搞点自己的idea比较不方便,所以近期租了要给自己的阿里云服务器. 以下为必要的软件的安装流程: jdk+jre: 1.去官网下载 jdk-linux版本: 2.解压压 ...