主席树+树链剖分——南昌邀请赛Distance on the tree
学了差不多一星期的主席树+树链剖分,再来看这题发现其实是个板子题
一开始想复杂了,以为要用类似求树上第k大的树上差分思想来解决这道题,但其实树链上<=k的元素个数其实直接可以用树链剖分来求
具体是把每条树链放到主席树上询问一下求和就好了
#include<bits/stdc++.h>
using namespace std;
#define maxn 100006
struct Edge{int to,nxt,w;}edge[maxn<<];
int b[maxn],n,m,a[maxn],head[maxn],tot;
void init(){memset(head,-,sizeof head);tot=;}
void addedge(int u,int v,int w){
edge[tot].to=v;edge[tot].nxt=head[u];edge[tot].w=w;head[u]=tot++;
}
struct Node{int lc,rc,sum;}T[maxn*];
int siz,rt[maxn];
int build(int l,int r){
int now=++siz;
T[now].lc=T[now].rc=T[now].sum=;
if(l==r)return now;
int mid=l+r>>;
T[now].lc=build(l,mid);
T[now].rc=build(mid+,r);
return now;
}
int update(int last,int pos,int l,int r){//更新到pos点
int now=++siz;
T[now]=T[last];T[now].sum++;
if(l==r)return now;
int mid=l+r>>;
if(pos<=mid)T[now].lc=update(T[last].lc,pos,l,mid);
else T[now].rc=update(T[last].rc,pos,mid+,r);
return now;
}
int query(int st,int ed,int L,int R,int l,int r){
if(L<=l && R>=r)return T[ed].sum-T[st].sum;
int mid=l+r>>,res=;
if(L<=mid)res+=query(T[st].lc,T[ed].lc,L,R,l,mid);
if(R>mid)res+=query(T[st].rc,T[ed].rc,L,R,mid+,r);
return res;
} int f[maxn],son[maxn],d[maxn],size[maxn];
void dfs1(int x,int pre,int deep){
f[x]=pre;size[x]=;d[x]=deep;
for(int i=head[x];i!=-;i=edge[i].nxt){
int y=edge[i].to;
if(y==pre)continue;
a[y]=edge[i].w;
dfs1(y,x,deep+);
size[x]+=size[y];
if(size[y]>size[son[x]])son[x]=y;
}
}
int id[maxn],rk[maxn],idx,top[maxn];
void dfs2(int x,int tp){
top[x]=tp;id[x]=++idx;rk[idx]=x;
if(son[x])dfs2(son[x],tp);
for(int i=head[x];i!=-;i=edge[i].nxt){
int y=edge[i].to;
if(y!=son[x] && y!=f[x])dfs2(y,y);
}
} int Query(int x,int y,int pos){
int res=;
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]])swap(x,y);
res+=query(rt[id[top[x]]-],rt[id[x]],,pos,,m);
x=f[top[x]];
}
if(id[x]>id[y])swap(x,y);
res+=query(rt[id[x]],rt[id[y]],,pos,,m);
return res;
}
int main(){int q;init();
cin>>n>>q;int u,v,w,k;
for(int i=;i<n;i++){
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);addedge(v,u,w);
} a[]=0x3f3f3f3f;
siz=;dfs1(,,);dfs2(,);//树剖
for(int i=;i<=n;i++)b[++m]=a[i];
sort(b+,b++m);
m=unique(b+,b++m)-(b+);
rt[]=build(,m);
for(int i=;i<=idx;i++){
int pos=lower_bound(b+,b++m,a[rk[i]])-b;
rt[i]=update(rt[i-],pos,,m);
} while(q--){
scanf("%d%d%d",&u,&v,&k);
int pos=upper_bound(b+,b++m,k)-(b+);
if(pos==){puts("");continue;}
else cout<<Query(u,v,pos)<<'\n';
}
}
主席树+树链剖分——南昌邀请赛Distance on the tree的更多相关文章
- 线段树&数链剖分
傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...
- BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)
题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...
- [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分
题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...
- UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- CF487E Tourists 圆方树、树链剖分
传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...
- 2019.01.08 codeforces 1009F. Dominant Indices(长链剖分)
传送门 长链剖分模板题. 题意:给出一棵树,设fi,jf_{i,j}fi,j表示iii的子树中距离点iii距离为jjj的点的个数,现在对于每个点iii要求出使得fif_ifi取得最大值的那个jjj ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
随机推荐
- Jetson TX1使用usb camera采集图像 (2)
该方法只启动usb摄像头 import cv2 import numpy import matplotlib.pyplot as plot class Camera: cap = cv2.VideoC ...
- subprocess
在没有subprocess这个模块的时候,我们怎么去跟我们的操作系统做交互的呐?下面我们先说说这三个模块:os.system().os.popen().commands. 1. os.system( ...
- LOJ2083 [NOI2016] 优秀的拆分 【哈希】【调和级数】
题目分析: 好题!我们发现题目实际是要求出从某个左端点开始跑出去的BB型有多少个和从某个右端点开始跑出去的AA型有多少个. 发现这个问题是对称的,所以只考虑从左端点跑出去的BB型有多少个就可以了. 我 ...
- VS2010查看源码对应的汇编语言
在学习c++中const关键字的过程中,经常会看到各种寄存器.汇编指令分析,像下面的图这样 左图是g++中反汇编的效果,右图是vs中反汇编的效果. 如果我们想要查看源码所对应的汇编语言,应该怎么操作呢 ...
- setTimeout与setInterval
setTimeout() 方法用于在指定的毫秒数后调用函数或计算表达式. 语法:setTimeout(code/function, milliseconds, param1, param2, ...) ...
- SDOI 2019 R1 摸鱼记
Day -1 学文化课第一天,也是这周最后一天. 昨晚 mxl 让我们今天下午放学走,大概六点的样子,感觉良好. 早读班主任送来请假条,跟我讲中午放学走??? 很懵逼,以为班主任口胡了,问了一句&qu ...
- head里两个重要标签base和meta
base标签 <base href="../"> 我们并不常用的一个标签,但是一旦用得不当会带来灾难性的影响. 它会影响到所有页面上的href和src属性相对路劲的定位 ...
- 分布式协调服务Zookeeper集群之ACL篇
分布式协调服务Zookeeper集群之ACL篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.zookeeper ACL相关知识概览 1>.zookeeper官方文档(h ...
- Phoenix(SQL On HBase)
1.简介 Phoenix是一个HBase框架,可以通过SQL的方式来操作HBase. Phoenix是构建在HBase上的一个SQL层,是内嵌在HBase中的JDBC驱动,能够让用户使用标准的JDBC ...
- ioctl函数
一.函数原型 #include <unistd.h> int ioctl(int fd, int request, .../* void *arg */); 二.和网络相关的请求(requ ...