celery是一个基于分布式消息传输的异步任务队列,它专注于实时处理,同时也支持任务调度。关于celery的更多介绍及例子,笔者可以参考文章Python之celery的简介与使用

  本文将介绍如何使用celery来加速爬虫。

  本文爬虫的例子来自文章:Python爬虫的N种姿势。这里不再过多介绍,我们的项目结构如下:

其中,app_test.py为主程序,其代码如下:

from celery import Celery

app = Celery('proj', include=['proj.tasks'])
app.config_from_object('proj.celeryconfig') if __name__ == '__main__':
app.start()

tasks.py为任务函数,代码如下:

import re
import requests
from celery import group
from proj.app_test import app @app.task(trail=True)
# 并行调用任务
def get_content(urls):
return group(C.s(url) for url in urls)() @app.task(trail=True)
def C(url):
return parser.delay(url) @app.task(trail=True)
# 获取每个网页的name和description
def parser(url):
req = requests.get(url)
html = req.text
try:
name = re.findall(r'<span class="wikibase-title-label">(.+?)</span>', html)[0]
desc = re.findall(r'<span class="wikibase-descriptionview-text">(.+?)</span>', html)[0]
if name is not None and desc is not None:
return name, desc
except Exception as err:
return '', ''

celeryconfig.py为celery的配置文件,代码如下:

BROKER_URL = 'redis://localhost' # 使用Redis作为消息代理

CELERY_RESULT_BACKEND = 'redis://localhost:6379/0' # 把任务结果存在了Redis

CELERY_TASK_SERIALIZER = 'msgpack' # 任务序列化和反序列化使用msgpack方案

CELERY_RESULT_SERIALIZER = 'json' # 读取任务结果一般性能要求不高,所以使用了可读性更好的JSON

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_ACCEPT_CONTENT = ['json', 'msgpack'] # 指定接受的内容类型

最后是我们的爬虫文件,scrapy.py,代码如下:

import time
import requests
from bs4 import BeautifulSoup
from proj.tasks import get_content t1 = time.time() url = "http://www.wikidata.org/w/index.php?title=Special:WhatLinksHere/Q5&limit=500&from=0"
# 请求头部
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, \
like Gecko) Chrome/67.0.3396.87 Safari/537.36'}
# 发送HTTP请求
req = requests.get(url, headers=headers)
# 解析网页
soup = BeautifulSoup(req.text, "lxml")
# 找到name和Description所在的记录
human_list = soup.find(id='mw-whatlinkshere-list')('li') urls = []
# 获取网址
for human in human_list:
url = human.find('a')['href']
urls.append('https://www.wikidata.org'+url) #print(urls) # 调用get_content函数,并获取爬虫结果
result = get_content.delay(urls) res = [v for v in result.collect()] for r in res:
if isinstance(r[1], list) and isinstance(r[1][0], str):
print(r[1]) t2 = time.time() # 结束时间
print('耗时:%s' % (t2 - t1))

  在后台启动redis,并切换至proj项目所在目录,运行命令:

celery -A proj.app_test worker -l info

输出结果如下(只显示最后几行的输出):

......
['Antoine de Saint-Exupery', 'French writer and aviator']
['', '']
['Sir John Barrow, 1st Baronet', 'English statesman']
['Amy Johnson', 'pioneering English aviator']
['Mike Oldfield', 'English musician, multi-instrumentalist']
['Willoughby Newton', 'politician from Virginia, USA']
['Mack Wilberg', 'American conductor']
耗时:80.05160284042358

在rdm中查看数据,如下:

  在文章Python爬虫的N种姿势中,我们已经知道,如果用一般的方法来实现这个爬虫,耗时大约为725秒,而我们使用celery,一共耗时约80秒,大概相当于一般方法的九分之一。虽然没有scrapy这个爬虫框架和异步框架aiohttp, asyncio来的快,但这也可以作为一种爬虫的思路。

  本次分享到此结束,感谢阅读~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

Python爬虫之使用celery加速爬虫的更多相关文章

  1. 洗礼灵魂,修炼python(52)--爬虫篇—【转载】爬虫工具列表

    与爬虫相关的常用模块列表. 原文出处:传送门链接 网络 通用 urllib -网络库(stdlib). requests -网络库. grab – 网络库(基于pycurl). pycurl – 网络 ...

  2. python爬虫:一些常用的爬虫技巧

    python爬虫:一些常用的爬虫技巧 1.基本抓取网页 get方法: post方法: 2.使用代理IP 在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP; 在urllib2包中有Pr ...

  3. python scrapy版 极客学院爬虫V2

    python scrapy版 极客学院爬虫V2 1 基本技术 使用scrapy 2 这个爬虫的难点是 Request中的headers和cookies 尝试过好多次才成功(模拟登录),否则只能抓免费课 ...

  4. 【python】一个简单的贪婪爬虫

    这个爬虫的作用是,对于一个给定的url,查找页面里面所有的url连接并依次贪婪爬取 主要需要注意的地方: 1.lxml.html.iterlinks()  可以实现对页面所有url的查找 2.获取页面 ...

  5. Python爬虫学习:三、爬虫的基本操作流程

    本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:三.爬虫的基本操作与流程 一般我们使用Python爬虫都是希望实现一套完整的功能,如下: 1.爬虫目标数据.信息: 2.将 ...

  6. Python爬虫学习:二、爬虫的初步尝试

    我使用的编辑器是IDLE,版本为Python2.7.11,Windows平台. 本文是博主原创随笔,转载时请注明出处Maple2cat|Python爬虫学习:二.爬虫的初步尝试 1.尝试抓取指定网页 ...

  7. python爬虫主要就是五个模块:爬虫启动入口模块,URL管理器存放已经爬虫的URL和待爬虫URL列表,html下载器,html解析器,html输出器 同时可以掌握到urllib2的使用、bs4(BeautifulSoup)页面解析器、re正则表达式、urlparse、python基础知识回顾(set集合操作)等相关内容。

    本次python爬虫百步百科,里面详细分析了爬虫的步骤,对每一步代码都有详细的注释说明,可通过本案例掌握python爬虫的特点: 1.爬虫调度入口(crawler_main.py) # coding: ...

  8. 【Python爬虫】01:网络爬虫--规则

    Python网络爬虫与信息提取 目标:掌握定向网络数据爬取和网页解析的基本能力. the website is the API 课程分为以下部分: 1.requsets库(自动爬取HTML页面.自动网 ...

  9. python 全栈开发,Day134(爬虫系列之第1章-requests模块)

    一.爬虫系列之第1章-requests模块 爬虫简介 概述 近年来,随着网络应用的逐渐扩展和深入,如何高效的获取网上数据成为了无数公司和个人的追求,在大数据时代,谁掌握了更多的数据,谁就可以获得更高的 ...

随机推荐

  1. remote: HTTP Basic: Access denied fatal: Authentication failed for'https'

    问题原因: 重置了密码导致git操作失败. 解决方案: 输入:git config --system --unset credential.helper 再次进行git操作,输入用户名,密码.

  2. vue-router路由学习总结

    vue路由 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  3. MySQL视图更新

    昨天在写美团2019秋招笔试题的时候遇到了关于视图是否能更新的问题,突然感觉这个问题之前复习的时候重点关注过,但是却又想不全.今天特地搜了一些资料总结一下.本文主要说明视图的更新限制,如需关于视图的更 ...

  4. Filter(过滤器)

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...

  5. C语言面试题分类->链表

    链表的创建,清空,插入,删除 typedef int (* __compfunc)(const void *, const void *); //Traverse list. Fast macro t ...

  6. 浅析HSTS

    浅析HSTS 一.HSTS是什么? HSTS全称:HTTP Strict Transport Security,意译:HTTP严格传输安全,是一个Web安全策略机制. 二.HSTS解决什么问题? 它解 ...

  7. Centos7 Nginx开机启动

    1.简易安装nginx: ./configure --sbin-path=/usr/local/nginx/nginx --conf-path=/usr/local/nginx/nginx.conf ...

  8. [Swift]LeetCode553. 最优除法 | Optimal Division

    Given a list of positive integers, the adjacent integers will perform the float division. For exampl ...

  9. Python中的json模块

    在Python内置函数中,有一个eval()函数可以将字符串内容转换成Python对象,比如我现在将一个字典 dic = {"name":"pengfy"}写到 ...

  10. SpringCloud(4)---Ribbon服务调用,源码分析

    SpringCloud(4)---Ribbon 本篇模拟订单服务调用商品服务,同时商品服务采用集群部署. 注册中心服务端口号7001,订单服务端口号9001,商品集群端口号:8001.8002.800 ...