枚举几个同学分到了

对于每种特产求一个方案数(经典做法)乘起来

然后容斥

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a),i##_end=(b);i<=i##_end;++i)
#define For(i,a,b) for(int i=(a),i##_end=(b);i<i##_end;++i)
#define per(i,a,b) for(int i=(b),i##_st=(a);i>=i##_st;--i)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define dbg(x) cerr<<#x" = "<<x<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Es(x,i) for(Edge *i=G[x];i;i=i->nxt)
typedef long long ll;
typedef pair<int,int> pii;
const int inf=~0u>>1,mod=1e9+7;
inline int rd() {
int x,c,f=1;while(!isdigit(c=getchar()))f=c!='-';x=c-'0';
while(isdigit(c=getchar()))x=x*10+c-'0';return f?x:-x;
}
inline int pw(int n,int m){int r=1;for(;m;m>>=1,n=(ll)n*n%mod)if(m&1)r=(ll)r*n%mod;return r;}
const int N=1011,M=2*N;
int fac[M],fai[M];
inline void init(){
fac[0]=1;
For(i,1,M)fac[i]=(ll)fac[i-1]*i%mod;
fai[M-1]=pw(fac[M-1],mod-2);
per(i,1,M-1)fai[i-1]=(ll)fai[i]*i%mod;
}
inline int C(int n,int m){return n<m?0:(ll)fac[n]*fai[m]%mod*fai[n-m]%mod;}
int m,n,a[N];
inline int Cal(int n){
int r=1;
rep(i,1,m){
r=(ll)r*C(a[i]+n-1,n-1)%mod;
}
return r;
}
int main(){
#ifdef flukehn
freopen("test.txt","r",stdin);
#endif
init();
//while(cin>>n>>m)cout<<C(n,m)<<endl;
n=rd(),m=rd();
rep(i,1,m)a[i]=rd();
ll ans=Cal(n);
For(i,1,n)ans+=((n-i&1)?-1:1)*(ll)Cal(i)*C(n,i)%mod;
ans=(ans%mod+mod)%mod;
cout<<ans<<endl;
}

  

BZOJ 4710的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

  3. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  4. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  5. bzoj 4710: [Jsoi2011]分特产

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  6. 【bzoj 4710】 [Jsoi2011]分特产

    题目 容斥加组合计数 显然答案是 \[\sum_{i=0}^n(-1)^i\binom{n}{i}f_{n-i}\] \(f_i\)表示至多有\(i\)个人没有拿到特产 考虑求\(f\) 发现\(m\ ...

  7. bzoj 4710 分特产

    有 $n$ 个人,$m$ 种物品,每种物品有 $a_i$ 个,求每个人至少分到一个的方案数 $n,m,a_i \leq 2000$ sol: 比上一个题简单一点 还是考虑容斥 每个人至少分到一个 = ...

  8. BZOJ 4710 容斥原理+dp

    //By SiriusRen #include <cstdio> using namespace std; int n,m,a[1005]; typedef long long ll; l ...

  9. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

随机推荐

  1. 2、搭建一个简单的Web项目

    一.创建一个Web项目: 1.File->new Project->Java->JavaEE->Web Application 2.为项目起名: 3.配置项目:在项目上击右键- ...

  2. JdLibrary 的使用

    写一个类 public class Init { public static void InitAssembly() { JdLibrary.JdEx.Excepteion = Object(new ...

  3. 要求必须全部重复的数据sql--想了半天才写出来的

    CREATE TABLE [dbo].[ABC]( ) NULL, ) NULL, ) NULL, ) NULL ) ON [PRIMARY] GO --DELETE FROM [dbo].[ABC] ...

  4. 虚拟机有QQ消息时宿主机自动弹窗提示

    因为是检测窗口实现的,所以要求设置会话窗口自动弹出,而且看完消息就把QQ消息窗口关掉... 虚拟机端 #! /usr/bin/env python # -*- coding: utf-8 -*- fr ...

  5. P5304 [GXOI/GZOI2019]旅行者

    题目地址:P5304 [GXOI/GZOI2019]旅行者 这里是官方题解 一个图 \(n\) 点 \(m\) 条边,里面有 \(k\) 个特殊点,问这 \(k\) 个点之间两两最短路的最小值是多少? ...

  6. 医学图像数据(二)——TCIA完整数据集下载方式

    1. 构建下载环境 l  TCIA数据集下载文件为.jnlp格式(JNLP(Java Network Launching Protocol )是java提供的一种可以通过浏览器直接执行java应用程序 ...

  7. 2019 icpc南昌全国邀请赛-网络选拔赛J题 树链剖分+离线询问

    链接:https://nanti.jisuanke.com/t/38229 题意: 给一棵树,多次查询,每次查询两点之间权值<=k的边个数 题解: 离线询问,树链剖分后bit维护有贡献的位置即可 ...

  8. c++入门篇八

    构造函数的调用规则: 系统会提供三个函数,一个是默认的构造函数(无参,函数体为空),一个是拷贝构造函数(无参,函数体为空),一个是析构函数,对类中非静态成员属性简单值拷贝\如果用户定义了拷贝构造函数, ...

  9. tensorflow--交叉熵

    学而不思则罔,思而不学则怠. 最近在看<TensorFlow 实战Google深度学习框架第二版>这本书.从头开始学习深度学习,对于细节方面进行探究.相当于重新拾起来这门”手艺“. 这篇随 ...

  10. C - Heavy Transportation && B - Frogger(迪杰斯变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...