A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

School of Mathematics and Computer Science,

Gannan Normal University

Ganzhou 341000, P.R. China

zhangzujin361@163.com

MSC2010: 26A03.

Keywords: Dense-in-self set; countable set.

Abstract:

Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.

1. Introduction and the main result

As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.

We generalize this fact as

Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.

Before proving Theorem 1, let us recall several related definitions and facts.

Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.

A well-known complete set is the Cantor set. Moreover, we have

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.

Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form

$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$

where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.

2. Proof of Theorem 1。

Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.

Now that $E'$ is complete, we see by Lemma 4,

$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$

For $\forall\ x\in E'$, $\forall\ \delta>0$, we have

$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$

By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that

$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$

This completes the proof of Theorem 1.

A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章

  1. A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$

    In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...

  2. Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)

    This lesson explains how to set rules for business classes and their properties. These rules are val ...

  3. [翻译] Writing Property Editors 编写属性编辑器

    Writing Property Editors 编写属性编辑器   When you select a component in the designer its properties are di ...

  4. Python2.7.6标准库内建函数

        Built-in Functions     abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...

  5. python3.4 build in functions from 官方文档 翻译中

    2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...

  6. python网络爬虫笔记(一)

    一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...

  7. 【转】php容易犯错的10个地方

    原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...

  8. Practical Go: Real world advice for writing maintainable Go programs

    转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline   1. Guiding pri ...

  9. .net两个对象比较,抛出不一样字段的结果

    现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...

随机推荐

  1. C语言----int (*p)[4] ---思考总结

    a+1  跳4个int (*a)+1 跳一个int

  2. Java操作Excel(使用POI)

    背景说明 以前写过使用 JXL 操作Excel的例子,但JXL对于Excel 2007版本以后的文件(即扩展名为 .xlsx)无法读取,也找不到可以支持的包.所以,有时不得不用 POI 来操作Exce ...

  3. windows环境:idea或者eclipse指定用户名操作hadoop集群

    方法 在系统的环境变量或java JVM变量添加HADOOP_USER_NAME(具体值视情况而定). 比如:idea里面可以如下添加HADOOP_USER_NAME=hdfs 原理:直接看源码 /h ...

  4. sbt安裝與配置

    官方下載地址:https://www.scala-sbt.org/download.html?spm=a2c4e.11153940.blogcont238365.9.42d147e0iF8dhv 解压 ...

  5. 总结JAVA----IO流中的File类

    对于IO流中File类的总结 File类的基本概念 File类只能用于完成对于文件属性(是否存在.可读性.长度)的一些操作,不能用于文件的访问. File类的对象 File类的对象存储的是文件的绝对路 ...

  6. c# 日期函数DateTime.ToString()日期的各种格式

    //c# datetime 格式化 DateTime dt = DateTime.Now; //2017/11/14 10:46:56 label1.Text = dt.ToString();//20 ...

  7. 12-tinyMCE文本编辑器+图片上传预览+页面倒计时自动跳转

    文本编辑器插件:1.将tinymce文件夹全部复制到webContent下2.tinymce/js目录下放 jquery等三个js文件3.语言包:tinymce/js/tinymce/langs目录下 ...

  8. Python 输出文件内容到网络端口

    Python 输出文件内容到网络端口 $ cat mySocketTest.py import sys import time import socket if __name__ == "_ ...

  9. 使用Roslyn脚本化C#代码,C#动态脚本实现方案

    [前言] Roslyn 是微软公司开源的 .NET 编译器. 编译器支持 C# 和 Visual Basic 代码编译,并提供丰富的代码分析 API. Roslyn不仅仅可以直接编译输出,难能可贵的就 ...

  10. 292. Nim Game(easy)

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...