A fine property of the non-empty countable dense-in-self set in the real line
A fine property of the non-empty countable dense-in-self set in the real line
Zujin Zhang
School of Mathematics and Computer Science,
Gannan Normal University
Ganzhou 341000, P.R. China
MSC2010: 26A03.
Keywords: Dense-in-self set; countable set.
Abstract:
Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then we shall show that $\bar E\bs E$ is dense in $\bar E$.
1. Introduction and the main result
As is well-known, $\bbQ\subset\bbR^1$ is countable, dense-in-self (that is, $\bbQ\subset \bbQ'=\bbR^1$); and $\bbR^1\bs \bbQ$ is dense in $\bbR^1$.
We generalize this fact as
Theorem 1. Let $E\subset \bbR^1$ be non-empty, countable, dense-in-self, then $\bar E\bs E$ is dense in $\bar E$.
Before proving Theorem 1, let us recall several related definitions and facts.
Definition 2. A set $E$ is closed iff $E'\subset E$. A set $E$ is dense-in-self iff $E\subset E'$; that is, $E$ has no isolated points. A set $E$ is complete iff $E'=E$.
A well-known complete set is the Cantor set. Moreover, we have
Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set $E$ has power $c$; that is, there is a bijection between $E$ and $\bbR^1$.
Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set $E$ has the form
$$\bex E=\sex{\bigcup_{n\geq 1}(a_n,b_n)}^c, \eex$$
where $(a_i,b_i)$, $(a_j,b_j)$ ($i\neq j$) have no common points.
2. Proof of Theorem 1。
Since $E$ is dense-in-self, we have $E\subset E'$, $\bar E=E'$. Also, by the fact that $E''=E'$, we see $E'$ is complete, and has power $c$. Note that $E$ is countable, we deduce $E'\bs E\neq \vno$.
Now that $E'$ is complete, we see by Lemma 4,
$$\bex E'^c=\bigcup_{n\geq 1}(a_n,b_n). \eex$$
For $\forall\ x\in E'$, $\forall\ \delta>0$, we have
$$\bee\label{dec} [x-\delta,x+\delta]\cap E'=\sex{[x-\delta,x+\delta]\cap (E'\bs E)} \cup\sex{[x-\delta,x+\delta]\cap E}. \eee$$
By analyzing the complement of $[x-\delta,x+\delta]\cap (E'\bs E)$, we see $[x-\delta,x+\delta]\cap E'$ (minus $\sed{x-\delta}$ if $x-\delta$ equals some $a_n$, and minus $\sed{x+\delta}$ if $x+\delta$ equals some $b_n$) is compelete, thus has power $c$. Due to the fact that $E$ is countable, we deduce from \eqref{dec} that
$$\bex [x-\delta,x+\delta]\cap (E'\bs E)\neq \vno. \eex$$
This completes the proof of Theorem 1.
A fine property of the non-empty countable dense-in-self set in the real line的更多相关文章
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Implement Property Value Validation in Code 在代码中实现属性值验证(XPO)
This lesson explains how to set rules for business classes and their properties. These rules are val ...
- [翻译] Writing Property Editors 编写属性编辑器
Writing Property Editors 编写属性编辑器 When you select a component in the designer its properties are di ...
- Python2.7.6标准库内建函数
Built-in Functions abs() divmod() input() open() staticmethod() all() enumerate() int() ord( ...
- python3.4 build in functions from 官方文档 翻译中
2. Built-in Functions https://docs.python.org/3.4/library/functions.html?highlight=file The Python i ...
- python网络爬虫笔记(一)
一.查询数据字典型数据 1.先说说dictionary查找和插入的速度极快,不会随着key的增加减慢速度,但是占用的内存大 2.list查找和插入的时间随着元素的增加而增加,但还是占用的空间小,内存浪 ...
- 【转】php容易犯错的10个地方
原文地址: http://www.toptal.com/php/10-most-common-mistakes-php-programmers-make 译文地址:http://codecloud.n ...
- Practical Go: Real world advice for writing maintainable Go programs
转自:https://dave.cheney.net/practical-go/presentations/qcon-china.html?from=timeline 1. Guiding pri ...
- .net两个对象比较,抛出不一样字段的结果
现在应该经常用到记录操作日志,修改和新增必定涉及到两个实体的属性值的变动. 利用反射,将变动记录下来. 切记,类中的属性字段上面需要打上Description标签: 例如: /// <summa ...
随机推荐
- .NET MVC全局异常处理(二)
目录 .NET MVC全局异常处理(二) MVC过滤器Filter .NET MVC全局异常处理(二) 对上节的内容进行了补充 MVC过滤器Filter MVC有四种过滤器:Authorization ...
- .NET Core跨平台部署
目录 .NET Core跨平台部署 1. Windows-IIS 1.1 安装.NET Core Windows Server Hosting 1.2 配置应用程序池 1.3 使用发布文件 2 Lin ...
- Java多线程与并发相关问题
1.什么是线程? 2.线程和进程有什么区别? 3.如何在Java中实现线程? 4.Java关键字volatile与synchronized作用与区别? volatile修饰的变量不保留拷贝,直接访问主 ...
- 如何删除windows中运行的历史记录
参照下图进入到注册表,依次打开红圈中的路径,在RunMRU里面列出来的全部是记录,全部删除即可
- Python开发【内置模块篇】configparser
生成配置文件 import configparser config = configparser.ConfigParser() config[', 'Compression': 'yes', ', ' ...
- identity server4 证书
我们需要对token进行签名, 这意味着identity server需要一对public和private key. 幸运的是, 我们可以告诉identity server在程序的运行时候对这项工作进 ...
- python之zip打包
import zipfile # 压缩 z = zipfile.ZipFile('z.zip', 'w') z.write('xo.xml') z.write('xxxoo.xml') z.close ...
- 搭建vue.js环境
一.安装Node.js (以下安装环境均为win10) 下载链接:https://nodejs.org/en/download/ 官网给出了两个版本,LTS和Curren.字面意思是推荐大多数用户使用 ...
- [Oracle维护工程师手记]两表结合的MVIEW的告诉刷新
对两表结合查询建立MVIEW,进行MVIEW的的高速刷新失败,如何处理? 例如: SQL> drop user u1 cascade; User dropped. SQL> grant d ...
- 基于 HTML5 的 WebGL 楼宇自控 3D 可视化监控
前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...