正则化

定义:正则化就是在计算损失函数时,在损失函数后添加权重相关的正则项。
作用:减少过拟合现象
正则化有多种,有L1范式,L2范式等。一种常用的正则化公式
\[J_{regularized} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 regularization cost}\]
使用正则化,需要分别在计算损失函数和反向传播计算导数时做相应的修改。
上述正则化对应的反向传播公式需添加一项:
\[\frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W\]

dropout

定义:dropout是指在每次迭代训练时随机从网络结构中去掉部分节点
作用:减少过拟合
注意:只在训练时使用dropout,测试时不使用
实现方法:给每一层节点都设置一个保留概率keep_prob

  1. 前向传播:

    • 定义一个和每一层输入相同结构的mask,随机初始化为0-1之间的小数
    • mask中小于keep_prob的,置为1(节点保留),否则为0(节点丢弃)
    • 该层输入 = 该层输入 * mask / keep_prob
  2. 反向传播:
    • dA = dA * mask / keep_prob

梯度校验

定义:通过比较反向传播梯度值与双边近似梯度值校验反向传播过程是否正确
作用:深度神经网络的前向传播实现相对简单,而反向传播相对复杂,容易出现差错。故用前向传播的结果近似计算梯度值,并与梯度值做比较。如果误差足够小,则认为反向传播计算是正确的。
梯度近似公式:
\[ \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon}\]
梯度差异公式:
\[ difference = \frac {\| grad - gradapprox \|_2}{\| grad \|_2 + \| gradapprox \|_2 }\]

  • \(\varepsilon\)一般取1e-7,如果最终差异小于1e-7认为是正确,大于1e-3认为错误,介于之间需要仔细确认。
  • 梯度校验非常耗时,训练时不进行校验,只在需要验证时运行。
  • 如果使用drop_out想进行梯度校验,先将keep_prob置为1,即关闭drop_out,校验无误后再打开drop_out

【深度学习】吴恩达网易公开课练习(class2 week1 task2 task3)的更多相关文章

  1. 【深度学习】吴恩达网易公开课练习(class2 week1)

    权重初始化 参考资料: 知乎 CSDN 权重初始化不能全部为0,不能都是同一个值.原因是,如果所有的初始权重是相同的,那么根据前向和反向传播公式,之后每一个权重的迭代过程也是完全相同的.结果就是,无论 ...

  2. 【深度学习】吴恩达网易公开课练习(class1 week4)

    概要 class1 week3的任务是实现单隐层的神经网络代码,而本次任务是实现有L层的多层深度全连接神经网络.关键点跟class3的基本相同,算清各个参数的维度即可. 关键变量: m: 训练样本数量 ...

  3. 【深度学习】吴恩达网易公开课练习(class1 week2)

    知识点汇总 作业内容:用logistic回归对猫进行分类 numpy知识点: 查看矩阵维度: x.shape 初始化0矩阵: np.zeros((dim1, dim2)) 去掉矩阵中大小是1的维度: ...

  4. 【深度学习】吴恩达网易公开课练习(class1 week3)

    知识点梳理 python工具使用: sklearn: 数据挖掘,数据分析工具,内置logistic回归 matplotlib: 做图工具,可绘制等高线等 绘制散点图: plt.scatter(X[0, ...

  5. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  6. cousera 深度学习 吴恩达 第一课 第二周 学习率对优化结果的影响

    本文代码实验地址: https://github.com/guojun007/logistic_regression_learning_rate cousera 上的作业是 编写一个 logistic ...

  7. 2017年度好视频,吴恩达、李飞飞、Hinton、OpenAI、NIPS、CVPR、CS231n全都在

    我们经常被问:机器翻译迭代了好几轮,专业翻译的饭碗都端不稳了,字幕组到底还能做什么? 对于这个问题,我们自己感受最深,却又来不及解释,就已经边感受边做地冲出去了很远,摸爬滚打了一整年. 其实,现在看来 ...

  8. 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)

    1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...

  9. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

随机推荐

  1. SyntaxError: missing ) after argument list

    消息 语法错误: 参数列表后面缺少 ) 错误类型 SyntaxError. 什么地方出错了? 有一个函数在调用时出现错误.这可能是一个错误,丢失运算符或者转义字符等. 示例 因为没有使用 ”+“ 操作 ...

  2. PHP——判断是否为加密协议https

    前言 就是一个封装的方法,用来判断域名前面是加http还是https 代码 function is_ssl() { if(isset($_SERVER['HTTPS']) && ('1 ...

  3. 2.8 hashlib模块

  4. vue常用手册

    1.搭建vue的开发环境: 1.必须要安装node.js 2.安装vue的脚手架工具 官方命令行工具 npm install --global vue-cli 3.新建项目 vue init webp ...

  5. Vue(小案例_vue+axios仿手机app)_go实现退回上一个路由

    一.前言 this.$router.go(-1)返回上级路由 二.主要内容 1.小功能演示: 2.组件之间的嵌套关系为: 3.具体实现 (1)由于这种返回按钮在每个页面中的结构都是一样的,只是里面的数 ...

  6. Django_restframework+vue解决跨域问题

    1. 安装 pip3 install django-cors-headers 2.在settings.py里设置 INSTALLED_APPS = ( ... 'corsheaders', ... ) ...

  7. MySQL学习笔记(六)MySQL8.0 配置笔记

    今天把数据库配置文件修改了,结果重启不了了 需要使用 mysqld --initialize 或 mysqld --initialize-insecure 命令来初始化数据库 1.mysqld --i ...

  8. 6核 CPU导致SQL2005安装时出“无法启动服务”错

    周一新买的IBM3650M3的服务器上安装SQL server2005 安装到一半时,报"提示:SQL Server 服务无法启动."错. 换了几个操作系统版本和换了几个版本的sq ...

  9. ArcGis安装失败提示“需要Microsoft .NET Framework 3.5 sp1或等效环境”的解决方法

    这个问题一般出现在Win8或者Win10系统上,因为系统默认没有启用该.Net Framework. 下载Microsoft .NET Framework 3.5 sp1安装后再开始安装ArcGis. ...

  10. JQuery对象关系图

    上图转自:http://www.cnblogs.com/haogj/archive/2010/04/19/1715762.html 自定义函数示例: $.fn.jAccordionunfold = f ...