实话说我本来想找SPFA的题,结果我硬生生的把这道题做成了Floyd

先来看题,我们会发现如果把他所给的变量都输入,那么会发现用Floyd的解法,输入占了main函数的一半长度。。。

题目分为两步走:

1.根据题意,我们可知是让我们算两点间直线距离,那我们就可以顺理成章的去用我们学过的——两点间距离公式!

2.就要看Floyd的了,我们知道了两点间的距离,那么我们就用Floyd找出最短的哪条路径(直接贴板子就行)

最后一定要记住,保留两位小数!

#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n,m,s,t;
int a,b;
double f[N][N];
double x[N],y[N];
int main()
{
cin>>n;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=;
for(int i=;i<=n;i++)
cin>>x[i]>>y[i];
cin>>m;
for(int i=;i<=m;i++)
{
cin>>a>>b;
f[a][b]=f[b][a]=sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
cin>>s>>t;
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
printf("%.2lf",f[s][t]);
return ;
}

luogu P1744 采购特价商品的更多相关文章

  1. P1744 采购特价商品 最短路径

    P1744 采购特价商品 图论-----最短路径算法 弗洛伊德算法  O(n^3) 代码: #include<iostream> #include<cstdio> #inclu ...

  2. 洛谷——P1744 采购特价商品

    P1744 采购特价商品 题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店, ...

  3. P1744 采购特价商品

    原题链接 https://www.luogu.org/problemnew/show/P1744 一道最短路的模板题.....很简单吧 求最短路的方法有很多,但是对于刚学完Floyd的我,只会用这个. ...

  4. P1744 采购特价商品 题解(讲解图论)

    图论的超级初级题目(模板题) 最短路径的模板题 图是啥?(白纸上的符号?) 对于一个拥有n个顶点的无向连通图,它的边数一定多于n-1条.若从中选择n-1条边,使得无向图仍然连通,则由n个顶点及这 n- ...

  5. 洛谷 P1744 采购特价商品

    题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店,每家店的坐标均在-1000 ...

  6. 洛谷题解 P1744 【采购特价商品】

    原题传送门 题目描述 中山路店山店海,成了购物狂爱与愁大神的"不归之路".中山路上有n(n<=100)家店,每家店的坐标均在-10000~10000之间.其中的m家店之间有通 ...

  7. 图论++【洛谷p1744】特价采购商品&&【一本通1342】最短路径问题

    (虽然题面不是很一样,但是其实是一个题qwq) [传送门] 算法标签: 利用Floyed的o(n3)算法: (讲白了就是暴算qwq) 从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如 ...

  8. Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)

    今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕) 你们都说图看着没意思不好看,那今天就来点情景             暑假,_GC准备去一些城市旅游.有些城市之 ...

  9. Floyed-Warshall【弗洛伊德算法】

    首先介绍一下有关最短路径的知识 从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径.解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算 ...

随机推荐

  1. Object.keys 及表单清空

    Object.keys 返回一个所有元素为字符串的数组,其元素来自于从给定的object上面可直接枚举的属性.这些属性的顺序与手动遍历该对象属性时的一致. // simple array var ar ...

  2. 【20190228】JavaScript-获取子元素

    在写JavaScript的时候发现了一个获取子节点的坑,如以下的html结构 <div id="parent"> <div>1</div> &l ...

  3. android 记一次富文本加载之路

    文章链接:https://mp.weixin.qq.com/s/69TRkmFL1aNuSqfw4ULMJw 项目中经常涉及到富文本的加载,后台管理端编辑器生成的一段html 代码要渲染到移动端上面, ...

  4. VS2017 EF本地数据库链接

    1. 本地数据库连接 server name可以从链接字符串中取: (localdb)\MSSQLLocalDB 注意少写一个\. { "Logging": { "Inc ...

  5. python 迭代器协议和生成器

    一.什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个stoplteration异常,以终止迭代(只能往后走,不能往前退) 2.可迭代 ...

  6. Linux 通过编译安装apache服务以及配置

    Linux 编译安装apache服务 一.安装 1.通过编译安装,首先需要下载源代码安装包 apache下载链接:http://httpd.apache.org/download.cgi 2.解开源代 ...

  7. 微信js-sdk开发获取签名和获取地理位置接口示例

    ###微信js-sdk开发获取签名和获取地理位置接口示例 前言:在做微信公众号开发时需要获取用户的地理位置信息,之前通过高德或者百度.腾讯等地图的api时发现经常获取不到,毕竟第三方的东西,后来改为采 ...

  8. mysql 的链接字符

    mysql的链接字符: driver =com.mysql.cj.jdbc.Driverurl =jdbc:mysql://localhost:3306/oa?serverTimezone=Asia/ ...

  9. 浪潮服务器I4008/NX5480M4介绍

    浪潮I4008 / NX5480M4是一款高密度模块化服务器. I4008是机箱,NX5480M4是节点. 8个计算节点模块可以部署在标准机架4U高度机器里,具有高性能.低功耗.易维护.组管理功能.适 ...

  10. Windows下的Nessus安装与启动

    Windows下的Nessus安装与启动 一.安装 在https://www.tenable.com/downloads/nessus下载对应windows版本 双击安装,完成后,访问 https:/ ...