题目大意:给定一棵 N 个点的树,点有点权,求对于每个点来说,以该点为根的子树内比该点点权小的点的个数。

题解:考虑对于每个点开一棵权值线段树。递归过程中,将子树的信息合并到父节点上,统计答案后,再将父节点信息加入权值线段树即可。

代码如下

#include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int maxn=1e5+10;
typedef long long ll; int n,a[maxn],d[maxn],cnt,ans[maxn];
vector<int> G[maxn];
struct node{
#define ls(o) t[o].lc
#define rs(o) t[o].rc
int lc,rc,sz;
}t[maxn*20];
int tot,root[maxn];
inline void pushup(int o){t[o].sz=t[ls(o)].sz+t[rs(o)].sz;}
void insert(int &o,int l,int r,int pos){
if(!o)o=++tot;
if(l==r){++t[o].sz;return;}
int mid=l+r>>1;
if(pos<=mid)insert(ls(o),l,mid,pos);
else insert(rs(o),mid+1,r,pos);
pushup(o);
}
int query(int o,int l,int r,int x,int y){
if(!o)return 0;
if(l==x&&r==y)return t[o].sz;
int mid=l+r>>1;
if(y<=mid)return query(ls(o),l,mid,x,y);
else if(x>mid)return query(rs(o),mid+1,r,x,y);
else return query(ls(o),l,mid,x,mid)+query(rs(o),mid+1,r,mid+1,y);
}
int merge(int x,int y,int l,int r){
if(!x||!y)return x+y;
if(l==r){t[x].sz+=t[y].sz;return x;}
int mid=l+r>>1;
ls(x)=merge(ls(x),ls(y),l,mid);
rs(x)=merge(rs(x),rs(y),mid+1,r);
return pushup(x),x;
} void read_and_parse(){// 1 - n
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),d[i]=a[i];
sort(d+1,d+n+1);
cnt=unique(d+1,d+n+1)-d-1;
for(int i=1;i<=n;i++)a[i]=lower_bound(d+1,d+cnt+1,a[i])-d;
for(int i=2,fa;i<=n;i++)scanf("%d",&fa),G[fa].pb(i);
} void dfs(int u){
for(auto v:G[u]){
dfs(v);
root[u]=merge(root[u],root[v],1,n);
}
ans[u]=t[root[u]].sz-query(root[u],1,n,1,a[u]-1);
insert(root[u],1,n,a[u]);
} void solve(){
dfs(1);
for(int i=1;i<=n;i++)printf("%d\n",ans[i]);
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P3605】晋升者计数的更多相关文章

  1. 洛谷 P1596 [USACO10OCT]湖计数Lake Counting

    题目链接 https://www.luogu.org/problemnew/show/P1596 题目描述 Due to recent rains, water has pooled in vario ...

  2. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  3. 洛谷 1144 最短路计数 bfs

    洛谷1144 最短路计数 传送门 其实这道题目的正解应该是spfa里面加一些处理,,然而,,然而,,既然它是无权图,,那么就直接bfs了,用一个cnt记录一下每一个点的方案数,分几种情况讨论一下转移, ...

  4. 洛谷 P4017 最大食物链计数

    洛谷 P4017 最大食物链计数 洛谷传送门 题目背景 你知道食物链吗?Delia生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条.于是她来就来求助你,然而你也不会啊!写 ...

  5. 动态规划 洛谷P4017 最大食物链计数——图上动态规划 拓扑排序

    洛谷P4017 最大食物链计数 这是洛谷一题普及/提高-的题目,也是我第一次做的一题 图上动态规划/拓扑排序 ,我认为这题是很好的学习拓扑排序的题目. 在这题中,我学到了几个名词,入度,出度,及没有环 ...

  6. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  7. BZOJ1833或洛谷2602 [ZJOI2010]数字计数

    BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...

  8. 洛谷 P2602 [ZJOI2010]数字计数

    洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...

  9. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  10. 洛谷P3605 [USACO17JAN] Promotion Counting 晋升者计数 [线段树合并]

    题目传送门 Promotion Counting 题目描述 The cows have once again tried to form a startup company, failing to r ...

随机推荐

  1. Android 性能优化:使用 Lint 优化代码、去除多余资源

    前言 在保证代码没有功能问题,完成业务开发之余,有追求的程序员还要追求代码的规范.可维护性. 今天,以“成为优秀的程序员”为目标的拭心将和大家一起精益求精,学习使用 Lint 优化我们的代码. 什么是 ...

  2. Python第三天 序列 5种数据类型 数值 字符串 列表 元组 字典 各种数据类型的的xx重写xx表达式

    Python第三天 序列  5种数据类型  数值  字符串  列表  元组  字典 各种数据类型的的xx重写xx表达式 目录 Pycharm使用技巧(转载) Python第一天  安装  shell ...

  3. 一个数据源demo

    前言 我们重复造轮子,不是为了证明我们比那些造轮子的人牛逼,而是明白那些造轮子的人有多牛逼. JDBC介绍 在JDBC中,我们可以通过DriverManager.getConnection()创建(而 ...

  4. .NET ORM框架之NHibernate

    这段时间一直使用NHibernate,今天抽空总结一下. 1.什么是NHibernate? NHibernate是一个面向.NET环境的对象/关系数据库映射工具.对象/关系数据库映射(object/r ...

  5. 先vue-cli,再nuxt试试路由

    https://segmentfault.com/a/1190000007933349

  6. SQL解析在美团的应用

    https://tech.meituan.com/SQL_parser_used_in_mtdp.html 数据库作为核心的基础组件,是需要重点保护的对象.任何一个线上的不慎操作,都有可能给数据库带来 ...

  7. SpringBoot学习笔记(2) Spring Boot的一些配置

    外部配置 Spring Boot允许使用properties文件.yaml文件或者命令行参数作为外部配置 使用@Value注解,可以直接将属性值注入到你的beans中,并通过Spring的Enviro ...

  8. ESP8266天线问题

    http://www.icxbk.com/ask/detail/28832.html 目前市面上常见的外接天线包括 1.FPC天线,就是一小块柔性PCB,上面走一个铜线,下方不覆铜,然后一般带一个贴纸 ...

  9. opn要求

    1.在公司 ♦可以通过阿里云的公网ip访问pg 2.不在公司 ♦需要连接VPN才可访问阿里云的公网ip的应用(假定pg),但是特别的应用不在公司也可直接访问(假定gitlab) 思路提示:vpn黑白名 ...

  10. 单机部署 ELK

    对于一个体量不大的系统,运行在单机上的 ELK 就足以胜任日志的处理任务了.本文介绍如何在单台服务器上安装并配置 ELK(elalasticsearch + logstash + kibana),并最 ...