题意

给你一颗有 \(n\) 个点并且以 \(1\) 为根的树。共有 \(q\) 次询问,每次询问两个参数 \(p, k\) 。询问有多少对点 \((p, a, b)\) 满足 \(p,a,b\) 为三个不同的点,\(p, a\) 都为 \(b\) 的祖先,且 \(p\) 到 \(a\) 的距离不能超过 \(k\) 。

\(n\le 300000 , q\le 300000\) 不要求强制在线。

题解

令 \(dep[u]\) 为点 \(u\) 的深度,\(sz[u]\) 为 \(u\) 的子树大小(除去 \(u\) 本身)

首先我们考虑两种情况:

  1. \(a\) 为 \(p\) 的祖先,那么这部分贡献很好计算,就是 \(\min\{dep[p] - 1,k\} \times sz[u]\) 。
  2. \(a\) 在 \(p\) 的子树内,那么这部分贡献就是 \(\displaystyle \sum_{dis(p,a) \le k} sz[a]\) 。

我们现在只要考虑第二部分贡献怎么求。

不难发现,这些点的深度就是 \([dep[p], dep[p]+k]\) 这个范围内的。

那么我们可以对于每个点用个 主席树 来存储这些信息,可以在线回答询问。

那么离线的话,可以考虑用 线段树合并 维护它每个子树的信息。

具体来说,这些都是对于每个 \(dep\) 维护它的 \(sz\) 的和,然后查区间和就行了。

然而这些时空复杂度都是 \(O(n \log n)\) ,其实还有更好的做法。

为什么我发现了呢qwq?

因为 fatesky 做这道题线段树合并做法的时候,Wearry 说可以 长链剖分 那就是 \(O(n)\) 的啦。

我们令 \(\displaystyle maxdep[u]=\max_{v \in child[u]} \{dep[v\}\) 也就是它子树中的最大深度。

具体来说,长链剖分就是把每个点儿子中 \(maxdep\) 最大的那个当做重儿子。重儿子与父亲连的边叫做重边。一连串重边不间断连到一起就叫做重链。

然后我们就有一条性质。

性质1 : 重链长度之和是 \(O(n)\) 的。

这个很显然啦,因为总共只有 \(O(n)\) 级别的边。

有了这个我们就可以解决一系列 关于深度的动态规划 问题了,对于这列问题常常都可以做到 \(O(n)\) 的复杂度。

具体操作就是,每次暴力继承重儿子的 \(dp\) 状态,然后轻儿子暴力合并上去。

不难发现这个复杂度是 \(O(\sum\) 重链长 \()\) \(= O(n)\) 的。

继承的时候常常需要移位,并且把当前节点贡献算入,并且这个 \(dp\) 需要动态空间才能实现。

对于这道题我们考虑维护一个后缀和,也就是对于 \(u\) 子树中的 \(v\) ,\(dep[v] \ge k\) 的所有 \(sz[v]\) 的和。

不难发现后缀和是很好合并的,这个的复杂度只需要 \(O(\min maxdep[v])\) 。

每次添加一个点 \(sz[u]\) 对于 \(dep[u]\) 的贡献只会对一个点的贡献产生影响,这个复杂度是 \(O(1)\) 的。

代码实现的话,就可以用一个 std :: vector ,按深度从大到小 ( \(maxdep[u] \to dep[u]\) )存储每个点的信息,因为这样最方便继承重儿子状态(每次加入状态只在整个 vector 末端添加一个元素)

其实可以动态开内存,顺着做,但我似乎学不来

常数似乎有点大,没比 \(O(n \log n)\) 快多少,vector 用多了... Wearry 到是优化了点常数到了 \(4000+ ms\) 。

话说这个很像原来 DOFY 讲过的那道 Dsu on Tree

代码

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__) using namespace std; typedef long long ll; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("3653.in", "r", stdin);
freopen ("3653.out", "w", stdout);
#endif
} const int N = 3e5 + 1e3; struct Ask { int k, id; } ; vector<Ask> V[N]; vector<int> G[N]; int sz[N], maxdep[N], dep[N], sonmaxdep[N], son[N], rt[N]; vector<ll> sum[N]; int n, q; ll ans[N], Size = 0; void Dfs_Init(int u, int fa = 0) { maxdep[u] = dep[u] = dep[fa] + 1; For (i, 0, G[u].size() - 1) {
register int v = G[u][i];
if (v ^ fa) Dfs_Init(v, u), chkmax(maxdep[u], maxdep[v]);
} } void Dfs(int u, int fa = 0) { For (i, 0, G[u].size() - 1) {
int v = G[u][i];
if (v == fa) continue ;
Dfs(v, u); sz[u] += sz[v];
if (maxdep[v] > maxdep[son[u]]) son[u] = v;
}
rt[u] = rt[son[u]]; if (!rt[u]) rt[u] = ++ Size; int len = (int)sum[rt[u]].size();
ll Last = len ? sum[rt[u]][len - 1] : 0;
sum[rt[u]].push_back(Last); if (son[u]) {
For (i, 0, G[u].size() - 1) {
int v = G[u][i]; if (v == fa || v == son[u]) continue ;
For (j, 0, sum[rt[v]].size() - 1) {
int nowdep = (maxdep[son[u]] - maxdep[v]) + j;
sum[rt[u]][nowdep] += sum[rt[v]][j];
}
sum[rt[u]][len] += sum[rt[v]][sum[rt[v]].size() - 1];
}
} For (i, 0, V[u].size() - 1) {
Ask now = V[u][i];
ans[now.id] = sum[rt[u]][len];
if (len > now.k) ans[now.id] -= sum[rt[u]][len - now.k - 1];
ans[now.id] += 1ll * min(dep[u] - 1, now.k) * sz[u];
} sum[rt[u]][len] += sz[u]; ++ sz[u]; } int main () { File(); n = read(); q = read(); For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v);
G[v].push_back(u);
} For (i, 1, q) {
int p = read(), k = read();
V[p].push_back((Ask) {k, i});
} Dfs_Init(1); Dfs(1); For (i, 1, q)
printf ("%lld\n", ans[i]); return 0;
}

BZOJ 3653: 谈笑风生(离线, 长链剖分, 后缀和)的更多相关文章

  1. 【BZOJ3653】谈笑风生(长链剖分)

    [BZOJ3653]谈笑风生(长链剖分) 题面 BZOJ 洛谷 权限题啊.... 题解 首先根据题目给的条件,发现\(a,b\)都要是\(c\)的父亲. 所以这三个点是树上的一条深度单增的链. 因为\ ...

  2. 2019.01.19 bzoj3653: 谈笑风生(长链剖分优化dp)

    传送门 长链剖分优化dpdpdp水题. 题意简述:给一棵树,mmm次询问,每次给一个点aaa和一个值kkk,询问满足如下条件的三元组(a,b,c)(a,b,c)(a,b,c)的个数. a,b是c的祖先 ...

  3. bzoj 3252: 攻略 -- 长链剖分+贪心

    3252: 攻略 Time Limit: 10 Sec  Memory Limit: 128 MB Description 题目简述:树版[k取方格数]   众所周知,桂木桂马是攻略之神,开启攻略之神 ...

  4. bzoj 3252 攻略 长链剖分思想+贪心

    攻略 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 889  Solved: 423[Submit][Status][Discuss] Descrip ...

  5. BZOJ 3626 LCA(离线+树链剖分)

    首先注意到这样一个事实. 树上两个点(u,v)的LCA的深度,可以转化为先将u到根路径点权都加1,然后求v到根路径上的总点权值. 并且该题支持离线.那么我们可以把一个区间询问拆成两个前缀和形式的询问. ...

  6. P5384[Cnoi2019]雪松果树 (长链剖分)

    题面 一棵以 1 1 1 为根的 N N N 个节点的有根树, Q Q Q 次询问,每次问一个点 u u u 的 k k k 级兄弟有多少个(第 k k k 代祖先的第 k k k 代孩子),如果没有 ...

  7. BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)

    BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...

  8. BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)

    题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...

  9. BZOJ[3252]攻略(长链剖分)

    BZOJ[3252]攻略 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏<XX半岛> ...

随机推荐

  1. Android远程桌面助手之性能监测篇

    <Android下获取FPS的几种方法>一文中提到了Gamebench工具,它不仅可以获取FPS,还可以获取CPU及内存占用率等系统状态信息.其局限性也非常明显,切换应用时需要重新选择监控 ...

  2. EventBus中观察者模式的应用

    一 介绍 EventBus是一款安卓的开源消息传递框架,地址:https://github.com/greenrobot/EventBus android系统的消息传递非常复杂,比如activity和 ...

  3. MongoDB 中的【加减乘除】运算

    很多同学因为对MongoDB不熟悉,加之应用的不是很多,有时候会认为MongoDB数据库对一些功能不支持,或者认为支持不好.今天我们 演示一下 MongoDB对“加减乘除”的使用. 在MongoDB数 ...

  4. vue(2)—— vue简单语法运用,常用指令集

    按照前面的文章:vue(1)——node.js安装使用,利用npm安装vue  安装完vue之后,就可以使用vue了 vue vue简介 前面安装好vue之后,确实还没有对vue进行介绍,首先,官网: ...

  5. Highcharts入坑记

    第一次用Highcharts画一个温度湿度变化的图片,因为不熟悉跳了好多坑,特记录下: 一.JS引用 <script src="~/Scripts/jquery.min.js" ...

  6. AngularJS学习之旅—AngularJS Select(十)

    1.AngularJS Select(选择框) AngularJS 可以使用数组或对象创建一个下拉列表选项. ng-option:创建一个下拉列表,列表项通过对象和数组循环输出 eg: <div ...

  7. Hexo自定义页面的方法

    原文转自:http://refined-x.com/2017/07/10/Hexo%E8%87%AA%E5%AE%9A%E4%B9%89%E9%A1%B5%E9%9D%A2%E7%9A%84%E6%9 ...

  8. js字符串String提取方法比较

    JavaScript: Slice, Substring, or Substr的选择! 在JavaScript中,字符串主要通过以下String方法之一提取: // slice // syntax: ...

  9. 0106笔记--vc2012 打印堆栈

    清空icound 菜单 调试-->选项和设置--->常规--->启用调试助手 要把在未经处理的异常上展开调用堆栈选中: 然后就有

  10. 最小化spring XML配置,Spring提供了4种自动装配策略。

    1.ByName自动装配:匹配属性的名字 在配置文件中的写法: <bean name="course" class="course类的全包名">&l ...