一、高效的训练

     1、Large-batch training

  使用大的batch size可能会减小训练过程(收敛的慢?我之前训练的时候挺喜欢用较大的batch size),即在相同的迭代次数下,

相较于使用小的batch size,使用较大的batch size会导致在验证集上精度下降。文中介绍了四种方法。

Linear scaling learning rate

梯度下降是一个随机过程,增大batch size不会改变随机梯度的期望,但是减小了方差(variance)。换句话说,增大batch size

可以减小梯度中的噪声,所以,此时应该增大学习率来进行调整:随着batch size的增加,线性增加学习率。比如,初始学习率0.1,

batch size=256,当batch size增加为b时,学习率为0.1×b/256

  Learning rate warmup

  开始使用一个较小的学习率,当训练稳定后,再切换回初始学习率。例如使用5个epochs来warm up,初始学习率为n,在第i个batch,

1<=i<=m,学习率lr=i*n/m

  Zero γ

  在残差模块中,最后一层为BN层,先对x标准化输出为x̂,  再做一个尺度变换γ x̂ + β。γ和β都为可学习参数,被初始化为1和0。Zero γ

策略是,对于残差模块最后的BN层,γ设为0,相当于网络有更少的层数,在初始阶段更容易训练。

   No bias decay

weight decay一般应用在所有可学习参数上,包括weight和bias。为了防止过拟合,只在weights上做正则化,其他参数,包括bias,BN中的

γ和β都不做正则化。

 2、Low-precision training

用FP16对所有的parameters和activations进行存储和梯度的计算,与此同时使用FP32对参数进行拷贝用于参数的更新。另外,在损失函数上

乘以一个标量来将梯度的范围更好的对齐到FP16也是一个实用的做法

3、实验

很奇怪的对比实验,应该再加上相同的batch size才更有说服力啊。

  

二、Model Tweaks

  Model Tweaks是指修改模型的结构,比如某个卷基层的stride。本文以resnet为例,探讨这些tweak对精度的影响。

  1、ResNet Architecture

       一个典型的resnet50结构如下,其中input stem首先使用7*7卷积,stride=2,接着一个3*3的maxpool,stride=2。

input stem将特征减小至1/4,维度增加至64。从state2开始,每个stage包括down sampling和2个residual模块,如图。

2、ResNet Tweaks

        resnet-B更改了down sampling中 stride=2的位置,不让1*1的stride=2,

  

         resnet-C将input stem中的7×7卷积用3个3*3代替(节省参数),前两个c=32,最后一个为64.。

    为了减小stride=2,1*1卷积的损失,增加avg pool,conv stride=1(这样就不损失吗。。。)对比发现,

  resnet-D效果最好。

  

三、Training Refinements

     通过介绍训练中的策略,进一步提高模型准确率

  Cosine Learning Rate Decay

  其中η是学习率(不包括warm up阶段),不过看validation accur,step decay并不差于cosine decay啊

  

  Label Smoothing

  正常的交叉熵损失在预测的时候,对于给定的数据集的label,将正例设为1,负例设为0,是一个one-hot向量。这样子会有一些问题,

模型对于标签过于依赖,当数据出现噪声的时候,会导致训练结果出现偏差。增加一个变量ϵ,对类别进行平滑,此时loss变为,其中p(y)为真是标签,

p(c)为输出类别概率。

参考: https://zhuanlan.zhihu.com/p/53849733

https://www.cnblogs.com/zyrb/p/9699168.html

   Knowledge Distillation

   主要用于将大网络压缩为小网络,损失函数为,其中z和r分别是student model和teacher model的输出,p是真实标签的分布

  

  Mixup Training

   使用线性插值混合两个样本,构成新的样本,并使用新样本进行训练(没用过知识蒸馏,这意思是teacher model和student model一起训练?)。

  

   实验

  知识蒸馏对mobilnet,inception-v3并没有提升,因为teacher model是resnet,与它们不同。

  

  

  

Bag of Tricks for Image Classification with Convolutional Neural Networks论文笔记的更多相关文章

  1. Bag of Tricks for Image Classification with Convolutional Neural Networks笔记

    以下内容摘自<Bag of Tricks for Image Classification with Convolutional Neural Networks>. 1 高效训练 1.1 ...

  2. 训练技巧详解【含有部分代码】Bag of Tricks for Image Classification with Convolutional Neural Networks

    训练技巧详解[含有部分代码]Bag of Tricks for Image Classification with Convolutional Neural Networks 置顶 2018-12-1 ...

  3. Bag of Tricks for Image Classification with Convolutional Neural Networks

    这篇文章来自李沐大神团队,使用各种CNN tricks,将原始的resnet在imagenet上提升了四个点.记录一下,可以用到自己的网络上.如果图片显示不了,点击链接观看 baseline mode ...

  4. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  5. Notes on Large-scale Video Classification with Convolutional Neural Networks

    Use bigger datasets for CNN in hope of better performance. A new data set for sports video classific ...

  6. ImageNet Classification with Deep Convolutional Neural Networks 论文解读

    这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章.因为在之前,人们 ...

  7. Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记

    题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Cont ...

  8. cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记

    1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...

  9. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

随机推荐

  1. Flask Session 使用和源码分析 —— (6)

    基本使用 from flask import Flask, session, redirect, url_for, escape, request app = Flask(__name__) @app ...

  2. windows服务器nginx+php启动开源ecshop

    1,下载php,nginx,ECShop源码 2,解压php到指定目录(如:C:\php-7.2.6) 2.1,找到指定目录下文件php.ini-development复制重命名为php.ini 2. ...

  3. Laravel 框架结构 以及目录文件解读(学习笔记)

    composer下载Laravel 5.4(由于PHP版本仅7.0,故未下载5.6) composer create-project laravel/laravel your-project-name ...

  4. 多线程之:MESI-CPU缓存一致性协议

    MESI(Modified Exclusive Shared Or Invalid)(也称为伊利诺斯协议,是因为该协议由伊利诺斯州立大学提出)是一种广泛使用的支持写回策略的缓存一致性协议,该协议被应用 ...

  5. iView组件添加API中介绍的事件的方式(render方式添加事件)

    iView组件好用,文档齐全,品质可靠稳定.最大的好处是使用了Vue框架,使很多数据绑定和交互问题变的轻松,是难得的开源前端组件.给作者点个赞.用这个组件来学习Vue.js也是不错的选择. 最近用的比 ...

  6. nginx 80 端口 部署多个Web

    1.修改默认nginx.conf 文件 加入 include /usr/www/ngconfs/*.conf; 读取ngconfs文件下所有 *.conf文件 2.ngconfs 下多个文件创建 第二 ...

  7. OOM实例

    1. 使用Executors.newFixedThreadPool()方法,当不断创建新任务,而任务执行速度比创建速度慢时,任务对象就会在任务队列里面排队,堆内存得不到释放,导致OOM: 2. 使用P ...

  8. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  9. SQL学习指南第三篇

    再谈连接 外连接 之前的范例都是没有考虑条件可能无法为表中的所有行匹配的问题 左外连接与右外连接 SELECT a.account_id, a.cust_id, b.name FROM account ...

  10. python之模块之shutil模块

    shutil -- --High-level file operations  高级的文件操作模块. os模块提供了对目录或者文件的新建/删除/查看文件属性,还提供了对文件以及目录的路径操作.比如说: ...