前言

EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。

但是受到时间复杂度的限制,这种算法常常有TLE的风险

思想

还记得我们在介绍最大流的时候提到的求解思路么?

对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广。

没错,EK算法就是利用这种思想来解决问题的

实现

EK算法在实现时,需要对整张图遍历一边。

那我们如何进行遍历呢?BFS还是DFS?

因为DFS的搜索顺序的原因,所以某些毒瘤出题人会构造数据卡你,具体怎么卡应该比较简单,不过为了防止大家成为这种人我就不说啦(#^.^#)

所以我们选用BFS

在对图进行遍历的时候,记录下能进行增广的最大值,同时记录下这个最大值经过了哪些边。

我们遍历完之后对这条增广路上的边进行增广就好啦

代码

题目在这儿

代码里面我对一些重点的地方加了一些注释,如果我没写明白的话欢迎在下方评论:blush:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int MAXN=*1e6+;
const int INF=1e8+;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
struct node
{
int u,v,flow,nxt;
}edge[MAXN];
int head[MAXN];
int num=;//注意这里num必须从0开始
inline void add_edge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].flow=z;
edge[num].nxt=head[x];
head[x]=num++;
}
inline void AddEdge(int x,int y,int z)
{
add_edge(x,y,z);
add_edge(y,x,);//注意这里别忘了加反向边
}
int N,M,S,T;
int path[MAXN];//经过的路径
int A[MAXN];//S到该节点的最小流量
inline int EK()
{
int ans=;//最大流
while(true)//不停的找增广路
{
memset(A,,sizeof(A));
queue<int>q;//懒得手写队列了。。。
q.push(S);
A[S]=INF;
while(q.size()!=)
{
int p=q.front();q.pop();
for(int i=head[p];i!=-;i=edge[i].nxt)
{
if(!A[edge[i].v]&&edge[i].flow)
{
path[ edge[i].v ]=i;//记录下经过的路径,方便后期增广
A[edge[i].v]=min(A[p],edge[i].flow);//记录下最小流量
q.push(edge[i].v);
}
}
if(A[T]) break;//一个小优化
}
if(!A[T]) break;//没有可以增广的路径,直接退出
for(int i=T;i!=S;i=edge[path[i]].u)//倒着回去增广
{
edge[path[i]].flow-=A[T];
edge[path[i]^].flow+=A[T];//利用异或运算符寻找反向边,0^1=1 1^1=0
}
ans+=A[T];
}
return ans;
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
N=read(),M=read(),S=read(),T=read();
for(int i=;i<=M;i++)
{
int x=read(),y=read(),z=read();
AddEdge(x,y,z);
}
printf("%d", EK() );
return ;
}

性能分析

通过上图不难看出,这种算法的性能还算是不错,

不过你可以到这里提交一下就知道这种算法究竟有多快(man)了

可以证明,这种算法的时间复杂度为$O(n*m^2)$

大体证一下:

我们最坏情况下每次只增广一条边,则需要增广$m-1$次。

在BFS的时候,由于反向弧的存在,最坏情况为$n*m$

总的时间复杂度为$O(n*m^2)$

后记

EK算法到这里就结束了。

不过loj那道题怎么才能过掉呢?

这就要用到我们接下来要讲的其他算法

网络最大流算法—EK算法的更多相关文章

  1. 图论算法-网络最大流【EK;Dinic】

    图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...

  2. 【最大流之ek算法】HDU1532 求最大流

    本来是继续加强最短路的训练,但是遇到了一个最短路 + 最大流的问题,最大流什么鬼,昨天+今天学习了一下,应该对ek算法有所了解,凭借学习后的印象,自己完成并ac了这个最大流的模板题 题目大意:都是图论 ...

  3. 最大流的EK算法模板

    模板题:洛谷p3376 题目大意: 给出一个网络图,以及其源点和汇点,求出其网络最大流. 基本思路: 套模板 EK的时间复杂度O(V*E^2) EK算法思路: 1.通过BFS拓展合法节点(每个节点在本 ...

  4. 一般增广路方法求网络最大流(Ford-Fulkerson算法)

    /* Time:2015-6-18 接触网络流好几天了 写的第一个模版————Ford-Fulkerson算法 作用:求解网络最大流 注意:源点是0 汇点是1 如果题目输入的是1到n 请预处理减1 * ...

  5. HDU1532 网络流最大流【EK算法】(模板题)

    <题目链接> 题目大意: 一个农夫他家的农田每次下雨都会被淹,所以这个农夫就修建了排水系统,还聪明的给每个排水管道设置了最大流量:首先输入两个数n,m ;n为排水管道的数量,m为节点的数量 ...

  6. [学习笔记] 网络最大流的HLPP算法

    #define \(u\)的伴点集合 与\(u\)相隔一条边的且\(u\)能达到的点的集合 \(0x00~ {}~Preface\) \(HLPP(Highest~Label~Preflow~Push ...

  7. poj 1273 Drainage Ditches(最大流,E-K算法)

    一.Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clove ...

  8. Poj(1459),最大流,EK算法

    题目链接:http://poj.org/problem?id=1459 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Su ...

  9. POJ 1459 Power Network(网络最大流,dinic算法模板题)

    题意:给出n,np,nc,m,n为节点数,np为发电站数,nc为用电厂数,m为边的个数.      接下来给出m个数据(u,v)z,表示w(u,v)允许传输的最大电力为z:np个数据(u)z,表示发电 ...

随机推荐

  1. 别以为真懂Openstack: 虚拟机创建的50个步骤和100个知识点(5)

    八.KVM 这一步,像virsh start命令一样,将虚拟机启动起来了.虚拟机启动之后,还有很多的步骤需要完成. 步骤38:从DHCP Server获取IP 有时候往往数据库里面,VM已经有了IP, ...

  2. [转]Setting Keystone v3 domains

    http://www.florentflament.com/blog/setting-keystone-v3-domains.html The Openstack Identity v3 API, p ...

  3. Python程序里的注释和#号

    Python程序里的注释是很重要的.它们可以用自然语言告诉你某段代码的功能是什么.在你想要临时移除一段代码时,你还可以用注解的方式将这段代码临时禁用.接下来的练习将让你学会注释 : # A comme ...

  4. 阿里面试100%问到,JVM性能调优篇

    JVM 调优概述 性能定义 吞吐量 - 指不考虑 GC 引起的停顿时间或内存消耗,垃圾收集器能支撑应用达到的最高性能指标. 延迟 - 其度量标准是缩短由于垃圾啊收集引起的停顿时间或者完全消除因垃圾收集 ...

  5. app自动化问题点整理

    1.配置SDK环境发现adb无法生效: 解决方案: 这个问题一般就是你的环境变量没有配置好,很多同学比较容易出现的点就是win10系统的环境变量配置: 一定要注意打开path添加:%ANDROID_H ...

  6. cassandra vs mongo (1)存储引擎

    摘要 在MongoDB 初识篇中谈到过Mongo 与 Cassandra的区别,这边再谈谈Mongo与Cassandra的存储引擎差别 概括 存储引擎: 类型 功能 应用 hash 增删改.随机读.顺 ...

  7. scala合并Array

    val newarray = Array(1,2,3)++Array(4,5) newarray.foreach(println) 打印结果: 1 2 3 4 5

  8. 深入研究.NET Core的本地化机制

    ASP.NET Core中提供了一些本地化服务和中间件,可将网站本地化为不同的语言文化. ASP.NET Core中我们可以使用Microsoft.AspNetCore.Localization库来实 ...

  9. Lucene 07 - 对Lucene的索引库进行增删改查

    目录 1 添加索引 2 删除索引 2.1 根据Term删除索引 2.2 删除全部索引(慎用) 3 更新索引 数据保存在关系型数据库中, 需要实现增.删.改.查操作; 索引保存在索引库中, 也需要实现增 ...

  10. 产品研发团队如何融合OKR与Scrum敏捷开发?

    「 OKR 」现在非常的火爆,很多公司都在使用,不仅国外的 Google.英特尔等大公司在用,国内的一线知名互联网企业今日头条和一些创业团队也都在使用. 那为什么「 OKR 」这么受欢迎呢,因为把它可 ...