c/c++再学习:查找算法了解
1.顺序查找
说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
复杂度分析:
查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);
所以,顺序查找的时间复杂度为O(n)。
int sequence_search(vector<int>& nums, int val)
{
int len = nums.size();
for (int i = 0; i < len; i++)
{
if (nums[i] == val)
{
return i;
}
}
return -1;
}
2.二分查找
说明:元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
复杂度分析
最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);
int binary_search_recurse(vector<int>&nums, int val, int low, int high)
{
if (low == high)
{
if (nums[low] != val)
{
return -1;
}
else
{
return low;
}
}
int mid = low + (high - low) / 2;
if (nums[mid] == val) {
return mid;
}
else if (nums[mid] > val) {
return binary_search_recurse(nums, val, low, mid - 1);
}
else if (nums[mid] < val) {
return binary_search_recurse(nums, val, mid + 1, high);
}
return -1;
}
int binary_search(vector<int>&nums, int val)
{
quick_sort(nums, 0, nums.size() - 1);
return binary_search_recurse(nums, val, 0, nums.size() - 1);
}
3.插值查找
在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。
经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2(high-low);
通过类比,我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])(high-low)。
也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想
基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
复杂度分析
查找成功或者失败的时间复杂度均为O(log2(log2n))
int insert_search_recurse(vector<int>&nums, int val, int low, int high)
{
if (low == high)
{
if (nums[low] != val)
{
return -1;
}
else
{
return low;
}
}
int mid = low + (high - low) * (val - nums[low]) / (nums[high] - nums[low]);
if (nums[mid] == val) {
return mid;
}
else if (nums[mid] > val) {
return insert_search_recurse(nums, val, low, mid - 1);
}
else if (nums[mid] < val) {
return insert_search_recurse(nums, val, mid + 1, high);
}
return -1;
}
int insert_search(vector<int>&nums, int val)
{
quick_sort(nums, 0, nums.size() - 1);
return binary_search_recurse(nums, val, 0, nums.size() - 1);
}
c/c++再学习:查找算法了解的更多相关文章
- C语言再学习part3—算法
君子远庖厨,万物皆备于我.—孟子 这篇文章主要总结程序的主要要素,以及程序的构成是什么样子的.最后说说我学到的一种奇特的表示算法的方式—伪代码. 让我们开始吧! 一个程序应该包括以下两个主要要素: 1 ...
- Java学习之二分查找算法
好久没写算法了.只记得递归方法..结果测试下爆栈了. 思路就是取范围的中间点,判断是不是要找的值,是就输出,不是就与范围的两个临界值比较大小,不断更新临界值直到找到为止,给定的集合一定是有序的. 自己 ...
- Python学习日记(十三) 递归函数和二分查找算法
什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...
- Knowledge_SPA——精研查找算法
首先保证这一篇分析查找算法的文章,气质与大部分搜索引擎搜索到的文章不同,主要体现在代码上面,会更加高级,会结合到很多之前研究过的内容,例如设计模式,泛型等.这也与我的上一篇面向程序员编程--精研排序算 ...
- 最近邻查找算法kd-tree
http://blog.csdn.net/pipisorry/article/details/52186307 )选择特征(坐标轴)的方法 (2)以该特征的哪一个为界 (3)达到什么条件算法结束. ...
- ui2code中的深度学习+传统算法应用
背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们 ...
- Python递归函数,二分查找算法
目录 一.初始递归 二.递归示例讲解 二分查找算法 一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- Java实现的二分查找算法
二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小 于该中点 ...
随机推荐
- eclipse JVM 性能调优
最近因项目存在内存泄漏,故进行大规模的JVM性能调优 , 现把经验做一记录. 一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老 ...
- docker自定制镜像
概述 很多情况下我们需要自定制镜像,如果自定制过程中需要下载配置很多包,而且这些包之间还有依赖关系,那么如果我们手动去操作的话就会很麻烦,正确的做法是把操作的命令封装到一个文件里,然后直接执行这个文件 ...
- JAVA课设个人博客--多源数据教学管理系统
JAVA课设个人博客--多源数据教学管理系统 1.团队课程设计博客链接 https://www.cnblogs.com/hq9-/p/10278470.html 2. 个人负责模块或任务说明 主要模块 ...
- 理解Java的NIO
同步与阻塞 同步和异步是针对应用程序和内核的交互而言的. 同步:执行一个操作之后,进程触发IO操作并等待(阻塞)或者轮询的去查看IO的操作(非阻塞)是否完成,等待结果,然后才继续执行后续的操作. 异步 ...
- 小白之微信小程序第一次完成搭建本地服务与页面进行交互
如果忘记了搭建json-server的过程,可看上一篇随笔 1. index.xml 代码 <!--index.wxml--> <swiper indicator-dots=&qu ...
- Python 数据分析5
数据规整化 清理 转换 合并 重塑 数据库风格的DataFrame合并 pd.merge(df1, df2) # 默认会将重叠列的列名当作键,最好显式的指定下,另外merge默认是使用的inner j ...
- java笔试要点(java多线程)
一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上图中基本上囊括了Java中多线程各重要知识点.掌握了上图中的各知识点,Java中的多线程也就基本上掌 ...
- 命名空间的using声明
using声明具有如下的形式: using namespace::name; 一旦声明了上述语句,就可以直接访问命名空间中的名字: #include<iostream> //using声明 ...
- 关于lamp环境搭建过程的教程
一.搭建lamp 的网址 https://lamp.sh/install.html 二.对于linux下上传图片或音频失败原因? 1.必须将文件夹的权限设置为apache 命令为:chown -R a ...
- 区别 chown和chmod的用法
本人总是习惯使用chmod,而把chown混淆. chown就是修改 第一列内容的 ,chmod是修改 第3,4列内容的. chown用法用来更改某个目录或文件的用户名和用户组的chown 用户名:组 ...