Roman Numerals 

The original system of writing numbers used by the early Romans was simple but cumbersome. Various letters were used to represent important numbers, and these were then strung together to represent other numbers with the values decreasing monotonically from left to right. The letters they used and the numbers that were represented are given in the following table.

I 1   V 5
X 10   L 50
C 100   D 500
M 1000      

Thus 1993 was written as MDCCCCLXXXXIII. This system was then superseded by a partially place-oriented system, whereby if the above rule of decreasing values was broken, it meant that the immediately preceding (lower) value was deemed to be `negative' and was subtracted from the higher (out of place) value. In this system 1993 was usually written as MCMXCIII. There is still some controversy as to which letters could precede which other letters, but for the purposes of this problem we will assume the following restrictions:

1.
A letter from the left column can never appear more than three times in a row, and there can never be more than one other occurrence of that letter.

2.
A letter from the right column can never appear more than once.

3.
Once a letter has been used in a `negative' position, all subsequent characters (apart from the one immediately following) may not be greater than that character.

Thus we could write MXMIII for 1993 or CCXCIV for 294, however we could not write ILV for 54, nor could we write LIL for 99. Note that 299 could be written as CCXCIX or CCIC

Given a Roman sum, we can either interpret it as such or as an encoding of an Arabic sum. Thus V+V=X could be interpreted as an ambiguous encoding of an Arabic sum with V  {1, 2, 3, 4} and X = 2 * V. Similarly, X+X=XX could be interpreted as a correct Roman sum but an impossible Arabic encoding (apart from the trivial encoding X = 0) and XX+XX=MXC as an incorrect Roman sum, but a valid encoding with M = 1, X = 9, and C = 8.

Write a program that will read in sums in Roman numerals and determine whether or not they are correct as Roman sums and also whether they are impossible, ambiguous or valid as Arabic encodings. Assume that zero will never appear on its own or as a leading digit, and that no two Roman numerals map onto the same Arabic digit.

Input

Input will consist of a series of lines, each line consisting of an apparent Roman sum, i.e. a valid Roman number, a plus sign (
+
), another valid Roman number, an equal sign (
=
) and another valid Roman number. No Roman number will contain more than 9 letters. The file will be terminated by a line consisting of a single 
#
.

Output

Output will consist of a series of lines, one for each line of the input, and each containing two words. The first word will be one of (
Correct, Incorrect
) depending on whether the Roman sum is or is not correct. The second word will be separated from the first by exactly one space and will be one of the set (impossible, ambiguous, valid) depending on the Arabic sum.

Sample input

V+V=X
X+X=XX
XX+XX=MXC
#

Sample output

Correct ambiguous
Correct impossible
Incorrect valid

题意:分两步,第一步判断输入的罗马数字运算结果对不对。第二步,如果每个字母可以用0-9代替,且不同字母不能重复,且有前导零不考虑。判断有一种还是多种还是没有能使得运算结果正确的答案。

思路:

#include <stdio.h>
#include <string.h> char c[105];
int v[777];
int vv[777];
int vis[777];
int visn[10];
int vvv[10];
int vvvn;
int judge2;
char num[3][11];
void tra() {
judge2 = 0;
vvvn = 0;
memset(vv, 0, sizeof(vv));
memset(vvv, 0, sizeof(vvv));
memset(vis, 0, sizeof(vis));
memset(visn, 0, sizeof(visn));
int nu = 0;
int nul = 0;
memset(num, 0, sizeof(num));
for (int i = 0 ; i <= strlen(c); i ++) {
if (c[i] == '+' || c[i] == '=' || c[i] == '\0') {
num[nul ++][nu] = '\0';
nu = 0;
continue;
}
if (vis[c[i]] == 0)
{
vis[c[i]] = 1;
vvv[vvvn ++] = c[i];
}
num[nul][nu ++] = c[i];
}
}
int judge1() {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int i = 0; i < strlen(num[k]); i ++) {
if (v[num[k][i + 1]] <= v[num[k][i]] || i == strlen(num[k]) - 1)
numm[k] += v[num[k][i]];
else
numm[k] -= v[num[k][i]];
}
}
if (numm[0] + numm[1] == numm[2])
return 1;
else
return 0;
} void dfs(int nn)
{
if (judge2 == 2)
return;
if (nn == vvvn) {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int j = 0; j < strlen(num[k]); j ++) {
numm[k] = numm[k] * 10 + vv[num[k][j]];
}
}
if (numm[0] + numm[1] == numm[2]) {
judge2 ++;
}
return;
}
for (int i = 0; i <= 9; i ++) {
if (!visn[i]) {
vv[vvv[nn]] = i;
int bo = 0;
if (!vv[vvv[nn]]) {
for (int j = 0; j < 3; j ++) {
if (num[j][0] == vvv[nn] && strlen(num[j]) > 1) {
bo = 1;
break;
}
}
}
if (bo)
continue;
visn[i] = 1;
dfs(nn + 1);
visn[i] = 0;
}
}
}
int main()
{
v['I'] = 1; v['V'] = 5; v['X'] = 10; v['L'] = 50;
v['C'] = 100; v['D'] = 500; v['M'] = 1000;
while (gets(c) != NULL && c[0] != '#') {
tra();
dfs(0);
if (judge1())
printf("Correct ");
else
printf("Incorrect ");
if (judge2 == 0)
printf("impossible\n");
if (judge2 == 1)
printf("valid\n");
if (judge2 == 2)
printf("ambiguous\n");
}
return 0;
}

第一步好处理。。把每个罗马数字转换为数字比较即可

第二步就是暴力。每个字母0-9暴力,如果遇到两种情况就可以直接结束。

UVA 185(暴力DFS)的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. Strange Country II 暴力dfs

    这题点的个数(<=50)有限, 所以可以纯暴力DFS去搜索 //#pragma comment(linker, "/STACK:16777216") //for c++ Co ...

  3. UVA129 暴力dfs,有许多值得学习的代码

    紫书195 题目大意:给一个困难的串,困难的串的定义就是里面没有重复的串. 思路:不需要重新对之前的串进行判重,只需要对当前的加入的字符进行改变即可. 因为是判断字典序第k个的字符串,所以要多一个全局 ...

  4. 2018杭电多校第五场1002(暴力DFS【数位】,剪枝)

    //never use translation#include<bits/stdc++.h>using namespace std;int k;char a[20];//储存每个数的数值i ...

  5. A. The Fault in Our Cubes 暴力dfs

    http://codeforces.com/gym/101257/problem/A 把它固定在(0,0, 0)到(2, 2, 2)上,每次都暴力dfs检查,不会超时的,因为规定在这个空间上,一不行, ...

  6. UVa 818Cutting Chains (暴力dfs+位运算+二进制法)

    题意:有 n 个圆环,其中有一些已经扣在一起了,现在要打开尽量少的环,使所有的环可以组成一条链. 析:刚开始看的时候,确实是不会啊....现在有点思路,但是还是差一点,方法也不够好,最后还是参考了网上 ...

  7. UVA 818 Cutting Chains 切断圆环链 (暴力dfs)

    题意就是给一张无向图,去掉某些结点,然后连成一条链,问最少去掉几个结点. n很小n<=15,所以直接枚举2^15个状态就行啦. 链的条件是1.无环,2.没有度大于2的点,3.把n个散链连起来需要 ...

  8. UVA 11754 (暴力+中国剩余定理)

    题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...

  9. uva 211(dfs)

    211 - The Domino Effect Time limit: 3.000 seconds A standard set of Double Six dominoes contains 28 ...

随机推荐

  1. Memcached总结四:用ava程序连接memcached进行操作

    1. Memcached的Java环境设置 需要下载spymemcached-2.10.3.jar,并把这个jar放到java程序的classpath中才能使用memcached. 在下面的程序,假设 ...

  2. 在Qt中使用sleep(包含为win and *nix下sleep函数的实现及用法)

    http://blog.csdn.net/tingsking18/article/details/5304254 关于sleep函数,我们先来看一下他的作用:sleep函数是使调用sleep函数的线程 ...

  3. Linux内核学习笔记: uid之ruid,euid,suid

    转自: http://www.linuxidc.com/Linux/2011-09/43194.htm 看UNIX相关的书时经常能遇到这几个概念,但一直没有好好去理清这几个概念,以致对这几个概念一直一 ...

  4. javaweb学习总结(三十六)——使用JDBC进行批处理

    在实际的项目开发中,有时候需要向数据库发送一批SQL语句执行,这时应避免向数据库一条条的发送执行,而应采用JDBC的批处理机制,以提升执行效率. JDBC实现批处理有两种方式:statement和pr ...

  5. Android ImageButton | Button | TextView 点击和触摸效果

    ImageButton------------------------------------------------> 一.Java  代码: 在drawable目录下添加新的xml文件 bu ...

  6. Linux -- Ubuntu搭建java开发环境

    Steps 1 Check to see if your Ubuntu Linux operating system architecture is 32-bit or 64-bit, open up ...

  7. 让VS2010支持HTML5

    一.升级Microsoft Visual Studio 2010到Microsoft Visual Studio 2010 sp1 1.升级方法一这里直接给传送门了 Microsoft Visual ...

  8. BZOJ_1012_[JSOI2008]_最大数maxnumber_(线段树/树状数组+RMQ)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1012 两种操作: 1.求序列末尾n个数中的最大值. 2.在序列末尾插入一个数. 分析 线段树求 ...

  9. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  10. 使用Flashbuilder/Flashbuilder-plugins搭建Flex工程每日构建(自动化构建)的方法

    前段时间研究flex工程自动编译的时候,遇到了阻碍,就放下了,直到今天每日构建的问题又一次给项目组带来了麻烦,于是我彻底愤怒了. 最后,我的怒火没有白费,写出来以发泄情绪. [基本原理]: adobe ...