Roman Numerals 

The original system of writing numbers used by the early Romans was simple but cumbersome. Various letters were used to represent important numbers, and these were then strung together to represent other numbers with the values decreasing monotonically from left to right. The letters they used and the numbers that were represented are given in the following table.

I 1   V 5
X 10   L 50
C 100   D 500
M 1000      

Thus 1993 was written as MDCCCCLXXXXIII. This system was then superseded by a partially place-oriented system, whereby if the above rule of decreasing values was broken, it meant that the immediately preceding (lower) value was deemed to be `negative' and was subtracted from the higher (out of place) value. In this system 1993 was usually written as MCMXCIII. There is still some controversy as to which letters could precede which other letters, but for the purposes of this problem we will assume the following restrictions:

1.
A letter from the left column can never appear more than three times in a row, and there can never be more than one other occurrence of that letter.

2.
A letter from the right column can never appear more than once.

3.
Once a letter has been used in a `negative' position, all subsequent characters (apart from the one immediately following) may not be greater than that character.

Thus we could write MXMIII for 1993 or CCXCIV for 294, however we could not write ILV for 54, nor could we write LIL for 99. Note that 299 could be written as CCXCIX or CCIC

Given a Roman sum, we can either interpret it as such or as an encoding of an Arabic sum. Thus V+V=X could be interpreted as an ambiguous encoding of an Arabic sum with V  {1, 2, 3, 4} and X = 2 * V. Similarly, X+X=XX could be interpreted as a correct Roman sum but an impossible Arabic encoding (apart from the trivial encoding X = 0) and XX+XX=MXC as an incorrect Roman sum, but a valid encoding with M = 1, X = 9, and C = 8.

Write a program that will read in sums in Roman numerals and determine whether or not they are correct as Roman sums and also whether they are impossible, ambiguous or valid as Arabic encodings. Assume that zero will never appear on its own or as a leading digit, and that no two Roman numerals map onto the same Arabic digit.

Input

Input will consist of a series of lines, each line consisting of an apparent Roman sum, i.e. a valid Roman number, a plus sign (
+
), another valid Roman number, an equal sign (
=
) and another valid Roman number. No Roman number will contain more than 9 letters. The file will be terminated by a line consisting of a single 
#
.

Output

Output will consist of a series of lines, one for each line of the input, and each containing two words. The first word will be one of (
Correct, Incorrect
) depending on whether the Roman sum is or is not correct. The second word will be separated from the first by exactly one space and will be one of the set (impossible, ambiguous, valid) depending on the Arabic sum.

Sample input

V+V=X
X+X=XX
XX+XX=MXC
#

Sample output

Correct ambiguous
Correct impossible
Incorrect valid

题意:分两步,第一步判断输入的罗马数字运算结果对不对。第二步,如果每个字母可以用0-9代替,且不同字母不能重复,且有前导零不考虑。判断有一种还是多种还是没有能使得运算结果正确的答案。

思路:

#include <stdio.h>
#include <string.h> char c[105];
int v[777];
int vv[777];
int vis[777];
int visn[10];
int vvv[10];
int vvvn;
int judge2;
char num[3][11];
void tra() {
judge2 = 0;
vvvn = 0;
memset(vv, 0, sizeof(vv));
memset(vvv, 0, sizeof(vvv));
memset(vis, 0, sizeof(vis));
memset(visn, 0, sizeof(visn));
int nu = 0;
int nul = 0;
memset(num, 0, sizeof(num));
for (int i = 0 ; i <= strlen(c); i ++) {
if (c[i] == '+' || c[i] == '=' || c[i] == '\0') {
num[nul ++][nu] = '\0';
nu = 0;
continue;
}
if (vis[c[i]] == 0)
{
vis[c[i]] = 1;
vvv[vvvn ++] = c[i];
}
num[nul][nu ++] = c[i];
}
}
int judge1() {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int i = 0; i < strlen(num[k]); i ++) {
if (v[num[k][i + 1]] <= v[num[k][i]] || i == strlen(num[k]) - 1)
numm[k] += v[num[k][i]];
else
numm[k] -= v[num[k][i]];
}
}
if (numm[0] + numm[1] == numm[2])
return 1;
else
return 0;
} void dfs(int nn)
{
if (judge2 == 2)
return;
if (nn == vvvn) {
int numm[3];
numm[0] = numm[1] = numm[2] = 0;
for (int k = 0; k < 3; k ++) {
for (int j = 0; j < strlen(num[k]); j ++) {
numm[k] = numm[k] * 10 + vv[num[k][j]];
}
}
if (numm[0] + numm[1] == numm[2]) {
judge2 ++;
}
return;
}
for (int i = 0; i <= 9; i ++) {
if (!visn[i]) {
vv[vvv[nn]] = i;
int bo = 0;
if (!vv[vvv[nn]]) {
for (int j = 0; j < 3; j ++) {
if (num[j][0] == vvv[nn] && strlen(num[j]) > 1) {
bo = 1;
break;
}
}
}
if (bo)
continue;
visn[i] = 1;
dfs(nn + 1);
visn[i] = 0;
}
}
}
int main()
{
v['I'] = 1; v['V'] = 5; v['X'] = 10; v['L'] = 50;
v['C'] = 100; v['D'] = 500; v['M'] = 1000;
while (gets(c) != NULL && c[0] != '#') {
tra();
dfs(0);
if (judge1())
printf("Correct ");
else
printf("Incorrect ");
if (judge2 == 0)
printf("impossible\n");
if (judge2 == 1)
printf("valid\n");
if (judge2 == 2)
printf("ambiguous\n");
}
return 0;
}

第一步好处理。。把每个罗马数字转换为数字比较即可

第二步就是暴力。每个字母0-9暴力,如果遇到两种情况就可以直接结束。

UVA 185(暴力DFS)的更多相关文章

  1. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  2. Strange Country II 暴力dfs

    这题点的个数(<=50)有限, 所以可以纯暴力DFS去搜索 //#pragma comment(linker, "/STACK:16777216") //for c++ Co ...

  3. UVA129 暴力dfs,有许多值得学习的代码

    紫书195 题目大意:给一个困难的串,困难的串的定义就是里面没有重复的串. 思路:不需要重新对之前的串进行判重,只需要对当前的加入的字符进行改变即可. 因为是判断字典序第k个的字符串,所以要多一个全局 ...

  4. 2018杭电多校第五场1002(暴力DFS【数位】,剪枝)

    //never use translation#include<bits/stdc++.h>using namespace std;int k;char a[20];//储存每个数的数值i ...

  5. A. The Fault in Our Cubes 暴力dfs

    http://codeforces.com/gym/101257/problem/A 把它固定在(0,0, 0)到(2, 2, 2)上,每次都暴力dfs检查,不会超时的,因为规定在这个空间上,一不行, ...

  6. UVa 818Cutting Chains (暴力dfs+位运算+二进制法)

    题意:有 n 个圆环,其中有一些已经扣在一起了,现在要打开尽量少的环,使所有的环可以组成一条链. 析:刚开始看的时候,确实是不会啊....现在有点思路,但是还是差一点,方法也不够好,最后还是参考了网上 ...

  7. UVA 818 Cutting Chains 切断圆环链 (暴力dfs)

    题意就是给一张无向图,去掉某些结点,然后连成一条链,问最少去掉几个结点. n很小n<=15,所以直接枚举2^15个状态就行啦. 链的条件是1.无环,2.没有度大于2的点,3.把n个散链连起来需要 ...

  8. UVA 11754 (暴力+中国剩余定理)

    题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程 ...

  9. uva 211(dfs)

    211 - The Domino Effect Time limit: 3.000 seconds A standard set of Double Six dominoes contains 28 ...

随机推荐

  1. 1089-Duplicate Removal

    描述 The company Al's Chocolate Mangos has a web site where visitors can guess how many chocolate cove ...

  2. 乐1/MACBOOK/ N1 Type-C接口新体验

    经过在华强北电子市场排队一个小时,笔者顺利买到了期待已久的乐1,结合之前的NOKIA平板电脑N1,苹果全新MACBOOK,终于集齐了手机.平板.笔记本电脑三种TYPE-C接口设备(能兑换极品装备吗?^ ...

  3. springboot 配置多数据源

    1.首先在创建应用对象时引入autoConfig package com; import org.springframework.boot.SpringApplication; import org. ...

  4. HDU 4009 不定根最小树形图

    讲一下建图过程,首先建立一个超级源点S,对于这个源点,向每个HOUSE连一条有向边,权值为该HOUSE建立WELL的费用,即高度*X. 然后每个可以连边的WELL之间,费用为曼哈顿距离*Y,然后考虑两 ...

  5. Spring AOP实现方式一【附源码】

    基本代理模式  纯POJO切面 源码结构: 1.首先我们新建一个接口,love 谈恋爱接口. package com.spring.aop; /** * 谈恋爱接口 * * @author Admin ...

  6. 结构体dtype_t

    /* SQL data type struct */ typedef struct dtype_struct dtype_t; struct dtype_struct{ unsigned mtype: ...

  7. bzoj3878

    当初只会暴力,现在差不多觉得水了显然离线处理,对输入的数排序然后会发现不管怎么修改都是结果总是单调不降的对于每次处理,我们只要找到那段越界的即可显然上线段树,话说jsoi这么喜欢线段树?下面在bzoj ...

  8. SharePoint 2013版本功能对比介绍

    转:http://www.fengfly.com/plus/view-213720-1.html 在SharePoint使用中,经常纠结于版本问题,SharePoint 2013主要有免费的Found ...

  9. C# 线程知识--使用ThreadPool执行异步操作

    C# 线程知识--使用ThreadPool执行异步操作 在应用程序中有许多复杂的任务,对于这些任务可能需要使用一个或多个工作线程或I/O线程来协作处理,比如:定时任务.数据库数据操作.web服务.文件 ...

  10. Windows下的.NET+ Memcached安装

    转载请标明出处: http://www.yaosansi.com/ 原文:http://www.yaosansi.com/post/1396.html Memcached官方:http://danga ...