1057: [ZJOI2007]棋盘制作

Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 1848  Solved: 936
[Submit][Status][Discuss]

Description

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

Input

第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。

Output

包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

Sample Input

3 3

1 0 1

0 1 0

1 0 0

Sample Output

4

6

HINT

对于100%的数据,N, M ≤ 2000

Source

【思路】

极大化思想。

题目的第一问是经典的DP问题。

对于第二问,我们用极大化的思想求解。设悬线up[i][j]表示ij可向上延伸的最大值,L[i][j]表示ij悬线可向左延伸的最大下标,R同理。对于每一行从左向右扫描一遍,维护最靠右的不可延伸处的下标同时递推L,类似地求解R。

显然,当我们求解第二问的时候同时维护最大边长也可以解决第一问。

关于递推式:

If G[i][j]==G[i-1][j]

Up[i][j]=1;

L[i][j]=(I,j) 向左可延伸的最大下标lo。

R[i][j]=(I,j) 向右可延伸的最小下标ro。

Else

Up[i][j]=up[i-1][j]+1

L[i][j]=max(L[i-1][j],lo);

R[i][j]=min(R[i-1][j],ro);
【代码】

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; const int maxn = +; int w[maxn][maxn];
int n,m; int read_int() {
char c=getchar();
while(!isdigit(c)) c=getchar();
int x=;
while(isdigit(c)) {
x=x*+c-'';
c=getchar();
}
return x;
} /*
inline bool can(int i,int j) {
return (w[i][j]^w[i-1][j-1]==0 && w[i-1][j]^w[i][j-1]==0 && w[i][j]!=w[i-1][j]);
}
int d[maxn][maxn];
void get_ans1() {
int ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
d[i][j]=1;
if(i>1 && j>1 && can(i,j))
{
d[i][j]+=min(d[i-1][j-1],min(d[i-1][j],d[i][j-1]));
ans=max(ans,d[i][j]*d[i][j]);
}
}
cout<<ans<<"\n";
}
*/ int L[maxn][maxn],up[maxn][maxn],R[maxn][maxn];
void get_ans() {
int ans1=,ans2=;
for(int i=;i<=n;i++)
{
int lo=, ro=m+;
for(int j=;j<=m;j++)
{
if(j== || w[i][j-]==w[i][j]) lo=j;
if(i== || w[i][j]==w[i-][j]) up[i][j]=,L[i][j]=lo;
else {
up[i][j]=up[i-][j]+;
L[i][j]=max(L[i-][j],lo);
}
}
for(int j=m;j;j--)
{
if(j==m || w[i][j+]==w[i][j]) ro=j;
if(i== || w[i][j]==w[i-][j]) R[i][j]=ro;
else {
R[i][j]=min(R[i-][j],ro);
ans1=max(ans1,min(up[i][j],R[i][j]-L[i][j]+));
ans2=max(ans2,up[i][j]*(R[i][j]-L[i][j]+));
}
}
}
cout<<ans1*ans1<<"\n";
cout<<ans2<<"\n";
}
int main() { n=read_int(); m=read_int(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) w[i][j]=read_int(); get_ans(); return ;
}

PS:关于极大化思想,详可参见王知昆《浅谈用极大化思想解决最大子矩形问题

BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)的更多相关文章

  1. BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 3248  Solved: 1636 [Submit][St ...

  2. 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作

    好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...

  3. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  4. BZOJ1057 [ZJOI2007]棋盘制作

    Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...

  5. bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]

    Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...

  6. 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作

    洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...

  7. bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵

    既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...

  8. 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)

    传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...

  9. bzoj1057: [ZJOI2007]棋盘制作(悬线法)

    题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...

随机推荐

  1. 黑马程序员-IO(二)

    ------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 装饰设计模式: 当想要对已有对象进行功能增强时.可以定义类,将已经有的类传入,基于已经有的功能, ...

  2. EL标签和JSTL标签---JSP页面的应用

    ====EL(Expression Language)表达式语言:用于计算和输出存储在标志位置(page.request.session.application)的java对象的值: 1.开启和关闭E ...

  3. 防止sql注入式攻击 SQL注入学习——三层架构

    解决方案是:1.首先在UI录入时,要控制数据的类型和长度.防止SQL注入式攻击,系统提供检测注入式攻击的函数,一旦检测出注入式攻击,该数据即不能提交:2.业务逻辑层控制,通过在方法内部将SQL关键字用 ...

  4. Savelog项目总结回忆

    Savelog项目的细节已经不太记得,感觉有些遥远,需要翻回旧的笔记本电脑或者是旧的笔记本. 概述: 本项目采用的Linux C,监听一个或多个特殊的端口,当其中一个端口有发起连接时就产生一个新的线程 ...

  5. 跟我玩ADB——初识ADB

    ADB全称Android Debug Bridge, 是Android SDK的一个可以真实操作手机设备里面内容的工具. 一.功能介绍: 进入设备的shell进行命令行操作 使用5037端口,对设备进 ...

  6. Island of Survival 概率

    #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> ...

  7. XPATH 注入的介绍与代码防御

    0x01 介绍 软件未正确对 XML 中使用的特殊元素进行无害化处理,导致攻击者能够在终端系统处理 XML 的语法.内容或命令之前对其进行修改.在 XML 中,特殊元素可能包括保留字或字符,例如“&l ...

  8. Cohort Analysis Using Python

    Cohort Analysis是将某一个时期内的用户划分为一个cohort,并将多个cohort进行时间上的某个属性的比较的一种分析方法.Cohort Analysis在有些场景下非常有用.比如一个网 ...

  9. C语言存储类型及各存储类型作用域和生存域比较

    c语言中的存储类型有`auto`, `extern`, `register`,`static` 这四种,存储类型说明了该变量要在进程的哪一个段中分配内存空间,可以为变量分配内存存储空间的有数据区.BB ...

  10. 将小度WiFi改造为无线网卡(小度WiFi能够接收WiFi信号)

    安装官方的小度WiFi的驱动器,只能让它当做无线信号的发射装置,但是我想通过小度WiFi让我的台式电脑能都接收无线信号,于是经过一番折腾终于成功了.我的是win7. 小度WiFi无法接受无线信号,不能 ...