Everybody knows Fibonacci numbers, now we are talking about the Tribonacci numbers: 
T[0] = T[1] = T[2] = 1; 
T[n] = T[n - 1] + T[n - 2] + T[n - 3] (n >= 3)

Given a and b, you are asked to calculate the sum from the ath Fibonacci number to the bth Fibonacci number, mod 1,000,000,007, that is (T[a] + T[a + 1] + ... + T[b]) % 1,000,000,007.

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;

;
;

__int64 N;

void multipy( __int64 a[MAX_N][MAX_N], __int64 b[MAX_N][MAX_N], __int64 c[MAX_N][MAX_N] ){
    ; i <= ; i++ ){
        ; j <= ; j++ ){
            c[i][j] = ;
            ; k <= ; k++ ){
                c[i][j] = ( c[i][j] + a[i][k] * b[k][j] % MOD ) % MOD;
            }
        }
    }
}

void get_matrix_pow( __int64 a[MAX_N][MAX_N], __int64 n ){
    __int64 ans[MAX_N][MAX_N] = {};
    __int64 temp[MAX_N][MAX_N];
    ; i <= ; i++ )   ans[i][i] = ;

    while( n ){
         ==  ){
            multipy( ans, a, temp );
            memcpy( ans, temp, sizeof( __int64 ) * MAX_N * MAX_N );
        }
        multipy( a, a, temp );
        memcpy( a, temp, sizeof( __int64 ) * MAX_N * MAX_N );
        n /= ;
    }
    memcpy( a, ans, sizeof( __int64 ) * MAX_N * MAX_N );
}

__int64 solve( __int64 n ){
    __int64 a[MAX_N][MAX_N] = {};
     ){
        ;
    }
     ){
        ;
    } ){
        ;
    }
    a[][] = ;a[][] = ;a[][] = ;a[][] = ;
    a[][] = ;a[][] = ;a[][] = ;a[][] = ;
    a[][] = ;a[][] = ;a[][] = ;a[][] = ;
    a[][] = ;a[][] = ;a[][] = ;a[][] = ;
    get_matrix_pow( a, n -  );
    __int64 ans = ;
    __int64 b[MAX_N];
    b[] = b[] = b[] = ;
    b[] = ;
    ; i <= ; i++ ){
        ans = ( ans + a[][i] * b[i] % MOD ) % MOD;
    }
    return ans;
}

int main(){
    __int64 A, B;
    while( scanf( "%I64d%I64d", &A, &B ) != EOF ){
        printf(  ) + MOD ) % MOD );
    }
    ;
}

tribonacci的更多相关文章

  1. [LeetCode] 1137. N-th Tribonacci Number

    Description e Tribonacci sequence Tn is defined as follows: T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + ...

  2. 【Leetcode_easy】1137. N-th Tribonacci Number

    problem 1137. N-th Tribonacci Number solution: class Solution { public: int tribonacci(int n) { ) ; ...

  3. LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)

    这是小川的第409次更新,第441篇原创 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第260题(顺位题号是1137).Tribonacci(泰波那契)序列Tn定义如下: 对于n&g ...

  4. 1137. N-th Tribonacci Number(Memory Usage: 13.9 MB, less than 100.00% of Python3)

    其实思路很简单,套用一下普通斐波那契数列的非递归做法即可,不过这个成绩我一定要纪念一下,哈哈哈哈哈 代码在这儿: class Solution: def tribonacci(self, n: int ...

  5. 【leetcode】1137. N-th Tribonacci Number

    题目如下: The Tribonacci sequence Tn is defined as follows: T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 ...

  6. 【LeetCode】1137. N-th Tribonacci Number 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  7. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  8. UVA12470—Tribonacci (类似斐波那契,简单题)

    题目链接:https://vjudge.net/problem/UVA-12470 题目意思:我们都知道斐波那契数列F[i]=F[i-1]+F[i-2],现在我们要算这样的一个式子T[i]=T[i-1 ...

  9. Python简单试题

    1,相乘次数 题目要求描述: 一个整数每一位上的数字相乘,判断是否为个位数,若是则程序结束 ,不是则继续相乘,要求返回相乘次数. 例:39 > 3*9=27 > 2*7=14 > 1 ...

随机推荐

  1. 用OpenGL简单编写的一个最简单贪吃蛇游戏

    刚学OpenGL的时候,写的一个最简单的贪吃蛇游戏代码 如下: //贪吃蛇游戏 #include<stdio.h> #include<stdlib.h> #include< ...

  2. 002 Spring Restful案例

    1:工程结构 需要注意的是需要额外导入以下三个包: jackson-annotations-2.6.1.jar jackson-core-2.6.1.jar jackson-databind-2.6. ...

  3. SCLButton

    import UIKit let kSuccessTitle = "Congratulations" let kErrorTitle = "Connection erro ...

  4. [Android] AudioTrack实例

    AudioTrack在Android系统中是用于PCM数据的混音.播放,并不涉及到音频的解码.因此MP3这类经过编码的音频格式文件不能直接通过AudioTrack正确地播放,AudioTrack只能播 ...

  5. 【最长下降子序列】【动态规划】【二分】XMU 1041 Sequence

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1041 题目大意: 一个二维平面,上面n(n<=1 000 000)个点.问至少选 ...

  6. Triangle——LeetCode

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. HDOJ 1020 Encoding

    Problem Description Given a string containing only 'A' - 'Z', we could encode it using the following ...

  8. CXF框架入门实例

    首先:什么是CXF?为什么要用CXF? CXF 包含了大量的功能特性,但是主要集中在以下几个方面:支持 Web Services 标准:CXF 支持多种 Web Services 标准,包含 SOAP ...

  9. javac 命令行使用总结

    先给出参考的两个链接,然后再总结: 内容:使用javac 指定编译多个目录下java文件 链接:http://zhidao.baidu.com/link?url=W5ZERu8_ouGD-L_JH0v ...

  10. SKPhysicsJointFixed类

    继承自 NSObject 符合 NSCoding(SKPhysicsJoint)NSObject(NSObject) 框架  /System/Library/Frameworks/SpriteKit. ...