【Python之旅】第六篇(六):Python多进程使用

 

香飘叶子 2016-05-10 10:57:50 浏览190 评论0

python 多进程 多进程通信

摘要:   关于进程与线程的对比,下面的解释非常好的说明了这两者的区别:     这里主要说明关于Python多进程的下面几点: 1 2 3 4 5 6 7 1.多进程的使用方法 2.进程间的通信之multiprocessing.Manager()使用 3.Python进程池 ...

关于进程与线程的对比,下面的解释非常好的说明了这两者的区别:

这里主要说明关于Python多进程的下面几点:

1
2
3
4
5
6
7
1.多进程的使用方法
2.进程间的通信之multiprocessing.Manager()使用
3.Python进程池
1)比较简单的例子
2)多个进程多次并发的情况
3)验证apply.async方法是非阻塞的
4)验证apply.async中的get()方法是阻塞的

1.多进程的使用方法

直接给出下面程序代码及注释:

1
2
3
4
5
6
7
8
9
10
from multiprocessing import Process    #从多进程模块中导入Process
import time
 
def sayHi(name):
    print 'Hi my name is %s' % name
    time.sleep(3)
 
for in range(10):
    p = Process(target=sayHi, args=(i,))    #调用多进程使用方法
    p.start()                               #开始执行多进程

程序执行结果如下:

1
2
3
4
5
6
7
8
9
10
11
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python multiprocssing8.py 
Hi my name is 2
Hi my name is 3
Hi my name is 6
Hi my name is 1
Hi my name is 4
Hi my name is 5
Hi my name is 0
Hi my name is 7
Hi my name is 8
Hi my name is 9

输出顺序不一致,则是因为屏幕的抢占问题而已,但不同的进程执行是并发的。在执行程序的过程中,可以打开另一个窗口来查看进程的执行情况(上面sleep了3秒,所以速度一定要快):

1
2
3
4
5
6
7
8
9
10
11
12
13
xpleaf@xpleaf-machine:~$ ps -ef | grep mul*
xpleaf    10468   1827  1 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10469  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10470  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10471  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10472  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10473  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10474  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10475  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10476  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10477  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10478  10468  0 19:34 pts/1    00:00:00 python multiprocssing8.py
xpleaf    10480   8436  0 19:34 pts/2    00:00:00 grep --color=auto mul*

可以看到上面有11个进程,但是前面其实只开了10个进程,为什么会有11个呢?那是因为有一个主进程,即这整一个程序本身,而其它的10个进程则是这个主进程下面的子进程,但无论如何,它们都是进程。

同多线程一样,多进程也有join方法,即可以在p.start()后面加上去,一个进程的执行需要等待上一个进程执行完毕后才行,这就相当于进程的执行就是串行的了。

2.进程间的通信multiprocessing.Manager()使用

Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。

Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。

直接看下面的一个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import multiprocessing
import time
 
def worker(d, key, value):
    d[key] = value
 
mgr = multiprocessing.Manager()
d = mgr.dict()
jobs = []            #用来接收多进程函数的返回的结果,存放的是函数的入口
for in range(10):
    jobs.append(multiprocessing.Process(target=worker,args=(d,i,i*i)))
 
for in jobs:       #执行存放的函数入口
    j.start()
for in jobs:       #检测进程是否执行完毕
    j.join()
 
#time.sleep(1)       #如果有join()来进程进程是否执行完毕,则这里可以省略
print ('Results:' )
print d

程序执行结果如下:

1
2
3
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python multiprocssing_manager9.py 
Results:
{00112439416525636749864981}

3.Python进程池

前面我们讲过CPU在某一时刻只能执行一个进程,那为什么上面10个进程还能够并发执行呢?实际在CPU在处理上面10个进程时是在不停的切换执行这10个进程,但由于上面10个进程的程序代码都是十分简单的,并没有涉及什么复杂的功能,并且,CPU的处理速度实在是非常快,所以这样一个过程在我们人为感知里确实是在并发执行的,实际只不过是CPU在不停地切换而已,这是通过增加切换的时间来达到目的的。

10个简单的进程可以产生这样的效果,那试想一下,如果我有100个进程需要CPU执行,但因为CPU还要进行其它工作,只能一次再处理10个进程(切换处理),否则有可能会影响其它进程工作,这下可怎么办?这时候就可以用到Python中的进程池来进行调控了,在Python中,可以定义一个进程池和这个池的大小,假如定义进程池的大小为10,那么100个进程可以分10次放进进程池中,然后CPU就可以10次并发完成这100个进程了。

(1)比较简单的例子

程序代码及注释如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
from multiprocessing import Process,Pool    #导入Pool模块
import time
 
def sayHi(num):
    time.sleep(1)
    return num*num
 
p = Pool(processes=5)    #定义进程池的数量为5
 
result = p.apply_async(sayHi, [10])  #开始执行多进程,async为异步执行,即不会等待其它
#子进程的执行结果,为非阻塞模式,除非使用了get()方法,get()方法会等待子进程返回执行结果,
#再去执行下一次进程,可以看后面的例子;同理下有apply方法,阻塞模式,会等待子进程返回执行结果
print result.get()    #get()方法

程序执行结果如下:

1
2
3
4
5
6
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool10.py 
100
 
real    0m1.066s
user    0m0.016s
sys 0m0.032s

虽然是定义了进程池的数量为5,但由于这里只执行一个子进程,所以时间为1秒多。

上面的程序可以改写为下面的形式:

1
2
3
4
5
6
7
8
9
10
11
12
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(1)
    return num*num
 
p = Pool(processes=5)
 
result = p.map(sayHi,range(3))
 
for in result:print i

执行结果如下:

1
2
3
4
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python multiprocssing_pool10.py 
0
1
4

(2)多个进程多次并发的情况:解释进程池作用以及多进程并发执行消耗切换时间

修改上面的程序代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(1)
    return num*num
 
p = Pool(processes=5)
 
result_list = []
for in range(30):
    result_list.append(p.apply_async(sayHi, [i]))
 
for res in result_list:
    print res.get()

程序执行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python multiprocssing_pool_2_11.py 
0
1
4
9
16
 
25
36
49
64
81
 
 
100
121
144
169
196
 
225
256
289
324
361
 
400
441
484
529
576
 
625
676
729
784
841

每一部分数字之间有空白是因为我按了回车键的原因,以让这个结果更加明显,同时也可以知道,上面的30个进程是分6次来完成的,是因为我定义了进程池的数量为5(30/6=5),为了更有说服力,可以看一下程序的执行时间:

1
2
3
4
5
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool_2_11.py | grep real
 
real    0m6.143s
user    0m0.052s
sys 0m0.028s

可以看到执行的时间为6秒多,之所以不是6秒是因为主程序本身的执行需要一点时间,同时进程间的切换也是需要时间的(这里为5个进程间的切换,因为每次并发执行的进程数为5个),为了说明这一点,我们可以把pool大小改为100,但依然是并发执行6次,程序代码修改为如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(1)
    return num*num
 
p = Pool(processes=100)
 
result_list = []
for in range(600):
    result_list.append(p.apply_async(sayHi, [i]))
 
for res in result_list:
    print res.get()

再观察一下执行时间:

1
2
3
4
5
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool_2_11.py | grep real
 
real    0m6.371s
user    0m0.080s
sys 0m0.128s

虽然相差的时间只是零点几秒,但随着并发执行进程数的增加,进程间切换需要的时间越来越多,程序执行的时间也就越多,特别是当单个进程非常消耗CPU资源时。

(3)验证apply.sync方法是非阻塞的

第一个程序代码的注释中,我们说apply.sync方法是非阻塞的,也就是说,无论子进程是否已经执行完毕,只要主进程执行完毕,程序就会退出,看下面的探索过程,以验证一下。

看下面的程序代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(10)
    return num*num
 
p = Pool(processes=5)
 
result_list = []
for in range(30):
    result_list.append(p.apply_async(sayHi, [i]))
 
for res in result_list:
    print res.get()

先查看程序的执行时间:

1
2
3
4
5
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool_2_11.py | grep real
 
real    0m0.149s
user    0m0.020s
sys 0m0.024s

第一次运行这个程序时,出乎了我的意料,本来我以为这个程序的执行要18s左右才对的,因为子进程并发执行了6次,每一次都sleep了3s(并发执行的进程数比较少,切换的时间就不算上去了),但实际上也并非是如此,因为我查看系统进程时,情况是下面这样的:

1
2
xpleaf@xpleaf-machine:~$ ps -ef | grep mul*
xpleaf    11499   8436  0 20:35 pts/2    00:00:00 grep --color=auto mul*

如果原来我的想法是正确的,那么应该在这里可以看到多个我执行的进程才对(因为有个3s的时间在子进程里,并发6次,18s,应该有才对),为什么会没有呢?后来我把程序代码修改为如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(3)
    return num*num
 
p = Pool(processes=5)
 
result_list = []
for in range(30):
    result_list.append(p.apply_async(sayHi, [i]))
 
time.sleep(3)

即我在主程序中添加了time.sleep(3)的代码,还是先查看时间:

1
2
3
4
5
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool_2_11.py | grep real
 
real    0m3.107s
user    0m0.040s
sys 0m0.032s

在上面程序执行过程中,迅速地在另一个窗口查看系统进程:

1
2
3
4
5
6
7
8
xpleaf@xpleaf-machine:~$ ps -ef | grep mul*
xpleaf    11515   1827  4 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11517  11515  0 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11518  11515  0 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11519  11515  0 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11520  11515  0 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11521  11515  0 20:39 pts/1    00:00:00 python multiprocssing_pool_2_11.py
xpleaf    11526   8436  0 20:39 pts/2    00:00:00 grep --color=auto mul*

程序执行结束后,即显示了上面的时间后,我再查看进程:

1
2
xpleaf@xpleaf-machine:~$ ps -ef | grep mul*
xpleaf    11529   8436  0 20:39 pts/2    00:00:00 grep --color=auto mul*

于是,上网查找了一些资料,apply.async是非阻塞的,所谓的非阻塞是指:主进程不会等待子进程的返回结果后再结束;正常情况下,如果是产生于主进程的子进程,在主进程结束后也应该不会退出才对,但因为这里的子进程是由pool进程池产生的,所以主进程结束,pool即关闭,因为pool池中的进程需要pool调度才能执行,因此当pool关闭后,这些子进程也随即结束运行。

其实join方法就可以实现一个功能,就是让子进程结束后才结束主进程,把上面的代码修改为如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(3)
    return num*num
 
p = Pool(processes=5)
 
result_list = []
for in range(30):
    result_list.append(p.apply_async(sayHi, [i]))
 
p.close()    #执行p.join()前需要先关闭进程池,否则会出错
p.join()     #主进程等待子进程执行完后才结束

查看执行的时间:

1
2
3
4
5
6
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool_2_11.py | grep real
 
real    0m18.160s
user    0m0.048s
sys 0m0.044s
xpleaf@xpleaf-mac

当然,结果就是我们可以预料的了。

(4)验证apply.async中的get()方法是阻塞的

使用apply.sync中的get()方法时,是会阻塞的,即apply.sync会等进程返回执行结果后才会执行下一个进程,其实(2)中的第一个例子就可以体现出来(程序中有get(),于是就忽略apply.async的非阻塞特性,等待子进程返回结果并使用get()获得结果)。这里不妨看下来一个例子,以实现虽然是多进程并发,但是因为get()的缘故,进程是串行执行的。

程序代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
from multiprocessing import Process,Pool
import time
 
def sayHi(num):
    time.sleep(1)
    return num*num
 
p = Pool(processes=5)
 
for in range(20):
    result = p.apply_async(sayHi, [i])
    print result.get()

程序执行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ time python multiprocssing_pool10.py 
0
1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361
 
real    0m20.194s
user    0m0.044s
sys 0m0.064s

结果是一个一个输出的,其实从程序执行的时间也可以推算出来,至于为什么,那就是因为get()导致阻塞的原因了。

上面说得其实思路是不太清晰,主要是因为对多进程的掌握是还不够多的,在这个探索的过程中,自己也是慢慢接触到了许多编程思想和方法,还有和操作系统相关的知识,往后深入学习后,如果有时间,会再完善一下。

Python多进程使用的更多相关文章

  1. Python多进程编程

    转自:Python多进程编程 阅读目录 1. Process 2. Lock 3. Semaphore 4. Event 5. Queue 6. Pipe 7. Pool 序. multiproces ...

  2. Python多进程(1)——subprocess与Popen()

    Python多进程方面涉及的模块主要包括: subprocess:可以在当前程序中执行其他程序或命令: mmap:提供一种基于内存的进程间通信机制: multiprocessing:提供支持多处理器技 ...

  3. python多进程断点续传分片下载器

    python多进程断点续传分片下载器 标签:python 下载器 多进程 因为爬虫要用到下载器,但是直接用urllib下载很慢,所以找了很久终于找到一个让我欣喜的下载器.他能够断点续传分片下载,极大提 ...

  4. Python多进程multiprocessing使用示例

    mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. import multipr ...

  5. Python多进程并发(multiprocessing)用法实例详解

    http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Pyt ...

  6. python 多进程开发与多线程开发

    转自: http://tchuairen.blog.51cto.com/3848118/1720965 博文作者参考的博文:  博文1  博文2 我们先来了解什么是进程? 程序并不能单独运行,只有将程 ...

  7. Python多进程----从入门到放弃

    Python多进程 (所有只写如何起多进程跑数据,多进程数据汇总处理不提的都是耍流氓,恩,就这么任性) (1)进程间数据问题,因为多进程是完全copy出的子进程,具有独立的单元,数据存储就是问题了 ( ...

  8. day-4 python多进程编程知识点汇总

    1. python多进程简介 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,他提供了一 ...

  9. python 多进程 logging:ConcurrentLogHandler

    python 多进程 logging:ConcurrentLogHandler python的logging模块RotatingFileHandler仅仅是线程安全的,如果多进程多线程使用,推荐 Co ...

随机推荐

  1. android:persistent属性

    application PhoneApp既没有被Broadcast唤醒,也没有被其他service调用,那么是android是通过什么方式来启动PhoneApp,所以就发现了属性android:per ...

  2. springtest+juint开发测试如下:

    项目结构目录如下: UserMapper.java 为接口文件.User 为实体类.UserMapper.xml 为对应mybatis的xml文件.test为对应的测试包 applicationtes ...

  3. ACM训练计划step 1 [非原创]

    (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成 ...

  4. 利用Xilinx中的ROM构造查找表来计算sin和cos的方法探讨

    1.使用matlab制作.coe文件 查找表的构造 构造256点的正余弦表 exp(-j*2*pi*(0:255)/256),分别得到 cos和sin的查找表 matlab代码: 求sin fid = ...

  5. C++类:private、public、friend、protected的区别

           private和public的作用是让编译器帮你检查某些模块是否使用了他没权限使用的模块,也就是生成可执行代码的时候做权限检查.比如,公司里各个部门有自己私有的信息,财务部可以看所有员工 ...

  6. House Of Hello恶搞包为什么如此受热捧!

    凤凰时尚    在大多数人的心中,奢侈品都是昂贵的,摆在精美的橱窗中,动辄上万的价格,高贵而冷艳,也让很多人望而却步.然而,最近在很多时尚年轻一族中却流传着这样一句话“昂贵不等于奢侈,奢侈是一种生活态 ...

  7. c++ smart pointer

    智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露.它的一种通用实现技术是使用引用计数(reference ...

  8. underscore.js框架使用

    Underscore.js是一个很精干的库,压缩后只有4KB.它提供了几十种函数式编程的方法,弥补了标准库的不足,大大方便了JavaScript的编程.MVC框架Backbone.js就将这个库作为自 ...

  9. struts2的action访问servlet API的三种方法

    学IT技术,就是要学习... 今天无聊看看struts2,发现struts2的action访问servlet API的三种方法: 1.Struts2提供的ActionContext类 Object g ...

  10. Linux目录树

    Linux目录树(directory tree) 分层结构(不同于数据库文件系统),单个文件/目录的最大长度为255个字符,完整路径为4096个字符 特殊的文件系统 文件系统 挂载点 说明 Root ...