Description

水叮当得到了一块五颜六色的格子形地毯作为生日礼物,更加特别的是,地毯上格子的颜色还能随着踩踏而改变。
为了讨好她的偶像虹猫,水叮当决定在地毯上跳一支轻盈的舞来卖萌~~~
地毯上的格子有N行N列,每个格子用一个0~5之间的数字代表它的颜色。
水叮当可以随意选择一个0~5之间的颜色,然后轻轻地跳动一步,左上角的格子所在的联通块里的所有格子就会变成她选择的那种颜色。这里连通定义为:两个格子有公共边,并且颜色相同。
由于水叮当是施展轻功来跳舞的,为了不消耗过多的真气,她想知道最少要多少步才能把所有格子的颜色变成一样的。

题解:

我来当搬运工。。。

类型:IDA* (迭代加深启发式搜索)

方法一:

枚举每次选取了哪种颜色,然后找出左上角的格子所在的联通块,改变颜色。

为了避免来回改变、搜索深度过大,采用迭代加深的dfs限制搜索步数。

迭代加深也就是,依次限制搜索深度为0、1、2、3……进行搜索,搜索过程中发现深度超过限制就马上退出。只要搜索成功就找到了答案,也可以立即退出。

期望得分:0~10分。

方法二:

加入一个小剪枝:如果改变颜色后,左上角格子所在的联通块大小没有改变,可以剪枝。这样可以避免来回往复地搜索。

期望得分:10~20分。

方法三:

采用IDA*算法,设计估价函数。可以发现如果当前矩阵中除了左上角的联通块之外,共有M种颜色,那么还需要的步数不小于M。因此如果当前搜索深度+估价函数的值>深度限制,可以回溯。

期望得分:50~70分。

方法四:

我们可以发现,每次寻找左上角的格子所在的联通块耗费的时间常数巨大。因此我们在这里寻求突破。

我们引入一个N*N的v数组。左上角的格子所在的联通块里的格子标记为1。左上角联通块周围一圈格子标记为2,其它格子标记为0。如果某次选择了颜色c,我们只需要找出标记为2并且颜色为c的格子,向四周扩展,并相应地修改v标记,就可以不断扩大标记为1的区域,最终如果所有格子标记都是1,那么显然找到了答案。

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 500+100

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
const int dx[]={-,,,},dy[]={,-,,};
int a[][],v[][],f[],n,ID;
inline int left()
{
int tmp=;
memset(f,,sizeof(f));
for1(i,n)for1(j,n)
if(!f[a[i][j]]&&v[i][j]!=){f[a[i][j]]=;tmp++;}
return tmp;
}
inline void dfs(int x,int y,int c)
{
v[x][y]=;
for0(i,)
{
int xx=x+dx[i],yy=y+dy[i];
if(xx<||xx>n||yy<||yy>n||v[xx][yy]==)continue;
v[xx][yy]=;
if(a[xx][yy]==c)dfs(xx,yy,c);
}
}
inline int fill(int c)
{
int tmp=;
for1(i,n)for1(j,n)
if(a[i][j]==c&&v[i][j]==)
{
tmp++;
dfs(i,j,c);
}
return tmp;
}
inline bool IDA(int dep)
{
int g=left();
if(dep+g>ID)return ;
if(!g)return ;
int rec[][];
for0(i,)
{
memcpy(rec,v,sizeof(v));
if(fill(i)&&IDA(dep+))return ;
memcpy(v,rec,sizeof(v));
}
return ;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); while(cin>>n&&n)
{
memset(a,,sizeof(a));
memset(v,,sizeof(v));
for1(i,n)for1(j,n)a[i][j]=read();
dfs(,,a[][]);
for(ID=;;ID++)
if(IDA())break;
printf("%d\n",ID);
} return ; }

「Poetize5」水叮当的舞步的更多相关文章

  1. bzoj3041 水叮当的舞步 IDA*

    水叮当的舞步 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 230  Solved: 107[Submit][Status][Discuss] Des ...

  2. BZOJ 3041 水叮当的舞步

    3041: 水叮当的舞步 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 120  Solved: 67[Submit][Status][Discuss ...

  3. codevs 2495 水叮当的舞步

    题目链接:水叮当的舞步 我现在开始发题目链接了(主要还是因为懒得整理题面)-- 这道题一开始是看到MashiroSky在写,于是我也开始写这道题了(说白了就是狙击他)-- 这道题看到这么小的范围当然给 ...

  4. 【IDA*】codevs 2495:水叮当的舞步

    2495 水叮当的舞步 题目描述 Description 水叮当得到了一块五颜六色的格子形地毯作为生日礼物,更加特别的是,地毯上格子的颜色还能随着踩踏而改变. 为了讨好她的偶像虹猫,水叮当决定在地毯上 ...

  5. bzoj 3041: 水叮当的舞步 迭代加深搜索 && NOIP RP++

    3041: 水叮当的舞步 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 72  Solved: 44[Submit][Status] Descript ...

  6. 【BZOJ3041】水叮当的舞步 迭代深搜IDA*

    [BZOJ3041]水叮当的舞步 Description 水叮当得到了一块五颜六色的格子形地毯作为生日礼物,更加特别的是,地毯上格子的颜色还能随着踩踏而改变.为了讨好她的偶像虹猫,水叮当决定在地毯上跳 ...

  7. [codevs2495]水叮当的舞步

    [codevs2495]水叮当的舞步 试题描述 水叮当得到了一块五颜六色的格子形地毯作为生日礼物,更加特别的是,地毯上格子的颜色还能随着踩踏而改变. 为了讨好她的偶像虹猫,水叮当决定在地毯上跳一支轻盈 ...

  8. Bzoj3041 水叮当的舞步

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 132  Solved: 75 Description 水叮当得到了一块五颜六色的格子形地毯作为生日礼物 ...

  9. 【wikioi】2495 水叮当的舞步(IDA*)

    http://wikioi.com/problem/2495/ 这题我还是看题解啊囧.(搜索实在太弱.完全没想到A*,还有看题的时候想错了,.,- -) 好吧,估价还是那么的简单,判断颜色不同的数目即 ...

随机推荐

  1. [转] npm 模块安装机制简介

    npm 是 Node 的模块管理器,功能极其强大.它是 Node 获得成功的重要原因之一. 正因为有了npm,我们只要一行命令,就能安装别人写好的模块 . $ npm install 本文介绍 npm ...

  2. [转] Linux抓包工具tcpdump详解

    http://www.ha97.com/4550.html PS:tcpdump是一个用于截取网络分组,并输出分组内容的工具,简单说就是数据包抓包工具.tcpdump凭借强大的功能和灵活的截取策略,使 ...

  3. 移动前端之 zepto

    移动前端之 zepto http://qtown.corp.qunar.com/media/video/detail?id=1084&type=1&title=%E5%86%AF%E5 ...

  4. IDL计算儒略日

    遥感数据还有一些文章中使用数据的时候,经常使用儒略日(Julian day),即计算该天是一年中的第几天.正好有时间,就用IDL写了段儿小代码,方便使用.   ;+   ; :Author: caoz ...

  5. dedecms 5.7文章编辑器附件上传图标不显示

    我最近发现在使用dedecms 5.7文章编辑器附件上传图标不显示了,以前是没有问题的,这个更新系统就出来问题了,下面我来给大家分享此问题解决办法.   问题bug:在dedecms 5.7中发现了一 ...

  6. 读取xml时,遇到xmlns的问题

    1.读取xml的时候,由于xml里有xmlns的属性,导致了读xml无法正常读取.通过网上搜索,发现需要先注册命名空间.  xmlns是XML Namespaces的缩写,中文名称是XML(标准通用标 ...

  7. WCF,WebAPI,WCFREST和WebService的区别

    Web ServiceIt is based on SOAP and return data in XML form.It support only HTTP protocol.It is not o ...

  8. bash: ./configure: 权限不够 怎么办?

    configure没有执行权限 通过chmod给其加上x权限 chmod +x configure 再在该用户下执行 ./configure

  9. IDEA 13》》》14破解

    更新IDEA 15注册方式 http://15.idea.lanyus.com/ ------------------------------------------------ 之前的已不能用,下面 ...

  10. OpenCart 之registry功用

    1. “Registry”设计模式 在OpenCart中,Registry是整个系统的信息中枢. Registry是一个单例(Singleton),在index.php起始页面中, 首先作为构造函数参 ...