uva 10820 (筛法构造欧拉函数)
send a table
When participating in programming contests, you sometimes face the following problem: You know
how to calcutale the output for the given input values, but your algorithm is way too slow to ever
pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that
would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half
an hour and produce a table of answers for all possible input values, encode this table into a program,
submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,
but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.
But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program
small enough to pass the judge. The situation looked hopeless, until he discovered the following property
regarding the answers: the answers where calculated from two integers, but whenever the two
input values had a common factor, the answer could be easily derived from the answer for which the
input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range
[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer
from it by applying some simple calculations involving Answer(x, y) and k.
For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value
combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),
Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived
from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from
Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,
so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the
number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which
indicates the value of N. Input is terminated by a line which contains a zero. This line should not be
processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how
many values Jimmy has to pre-calculate for a certain value of N.
Sample Input
2
5
0
Sample Output
3
19
题解:输入一个数n,有多少个二元组(x,y)满足:1<=x,y<=n,且x和y互素。不难发现除了(1,1)之外,其他二元组的x和y都不相等。设满足x<y的二元组有a【n】个,那么答案就是2*a【n】-1,因为(1,1)时重复了一个1。
#include <iostream>
#include<cstring>
using namespace std;
int a[];
int sums[];
int f[];
int n;
int main()
{
memset(a,,sizeof(a));
a[]=;
for (int i = ; i < ; ++ i)
if (!a[i])
{
for (int j = i ; j < ; j += i)
{
if(!a[j])
a[j] = j;
a[j] = a[j]/i*(i-);
}
} sums[] = ;
for (int i = ; i < ; ++ i)
sums[i] = sums[i-]+a[i];
while (cin >> n && n)
cout << *sums[n]- << endl; return ;
}
uva 10820 (筛法构造欧拉函数)的更多相关文章
- Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数。
/** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满 ...
- 筛法求欧拉函数(poj2478
求1-n的欧拉函数的值 #include <iostream> #include <cstdio> #include <queue> #include <al ...
- UVA 11426 GCD-Extreme(II) ★ (欧拉函数)
题意 求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j) (N<=4000000) 分析 原始思路 暴力求明显是不行的,我们把式子简化形式一下发现它可以 ...
- AcWing 874. 筛法求欧拉函数
#include<bits/stdc++.h> using namespace std; typedef long long ll; ; int primes[N],cnt; int ph ...
- C++模板:欧拉函数
单个欧拉函数 int eular(int n){ int ret=1,i; for(i=2;i*i<=n;i++) if(n%i==0){ n/=i,ret*=i-1; while(n%i==0 ...
- Farey Sequence (素筛欧拉函数/水)题解
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/ ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 数学知识-欧拉函数&快速幂
欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- [Locked] Find the Celebrity
Find the Celebrity Suppose you are at a party with n people (labeled from 0 to n - 1) and among them ...
- Krypton Factor 困难的串-Uva 129(回溯)
原题:https://uva.onlinejudge.org/external/1/129.pdf 按照字典顺序生成第n个“困难的串” “困难的串”指的是形如ABAB, ABCABC, CDFGZEF ...
- POJ 2376 贪心
题意:FJ希望它的牛做一些清洁工作.有N只牛和T个时间段,每只牛可以承担一段时间内的工作.FJ希望让最小数量的牛覆盖整个T,求出其数量.若无法覆盖整个T,则输出-1. 分析:首先要注意T表示T个时间段 ...
- OpenStack 应用调试
- Ueditor 1.4.3 jsp utf-8版图片上传问题
- Java自动装箱和自动拆箱操作
1.Java数据类型 在介绍Java的自动装箱和拆箱之前,我们先来了解一下Java的基本数据类型. 在Java中,数据类型可以分为两大种,Primitive Type(基本类型)和Reference ...
- [HTML5] Emmet
For example we want to generate the code like this: <a href="#tab1">Tab 1</a>& ...
- IOS Dictionary和Model相互转换
// // HYBJSONModel.h // Json2ModelDemo // // Created by huangyibiao on 14-9-15. // Copyright (c) 201 ...
- discuz, 使用同一数据库, 只是换个环境, 数据就不一样了
如题, 本以为是由于某些冲突导致, 细查之后, 发现是开了缓存了, 把缓存关掉或是在后台清理缓存就OK了 后台清理缓存, 全局--性能优化--内存优化 清理缓存 关闭缓存, 修改全局配置文件, co ...
- HDU 5119 Happy Matt Friends(dp+位运算)
题意:给定n个数,从中分别取出0个,1个,2个...n个,并把他们异或起来,求大于m个总的取法. 思路:dp,背包思想,考虑第i个数,取或者不取,dp[i][j]表示在第i个数时,异或值为j的所有取法 ...