uva 10820 (筛法构造欧拉函数)
send a table
When participating in programming contests, you sometimes face the following problem: You know
how to calcutale the output for the given input values, but your algorithm is way too slow to ever
pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that
would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half
an hour and produce a table of answers for all possible input values, encode this table into a program,
submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,
but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.
But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program
small enough to pass the judge. The situation looked hopeless, until he discovered the following property
regarding the answers: the answers where calculated from two integers, but whenever the two
input values had a common factor, the answer could be easily derived from the answer for which the
input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range
[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer
from it by applying some simple calculations involving Answer(x, y) and k.
For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value
combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),
Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived
from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from
Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,
so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the
number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which
indicates the value of N. Input is terminated by a line which contains a zero. This line should not be
processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how
many values Jimmy has to pre-calculate for a certain value of N.
Sample Input
2
5
0
Sample Output
3
19
题解:输入一个数n,有多少个二元组(x,y)满足:1<=x,y<=n,且x和y互素。不难发现除了(1,1)之外,其他二元组的x和y都不相等。设满足x<y的二元组有a【n】个,那么答案就是2*a【n】-1,因为(1,1)时重复了一个1。
#include <iostream>
#include<cstring>
using namespace std;
int a[];
int sums[];
int f[];
int n;
int main()
{
memset(a,,sizeof(a));
a[]=;
for (int i = ; i < ; ++ i)
if (!a[i])
{
for (int j = i ; j < ; j += i)
{
if(!a[j])
a[j] = j;
a[j] = a[j]/i*(i-);
}
} sums[] = ;
for (int i = ; i < ; ++ i)
sums[i] = sums[i-]+a[i];
while (cin >> n && n)
cout << *sums[n]- << endl; return ;
}
uva 10820 (筛法构造欧拉函数)的更多相关文章
- Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数。
/** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满 ...
- 筛法求欧拉函数(poj2478
求1-n的欧拉函数的值 #include <iostream> #include <cstdio> #include <queue> #include <al ...
- UVA 11426 GCD-Extreme(II) ★ (欧拉函数)
题意 求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j) (N<=4000000) 分析 原始思路 暴力求明显是不行的,我们把式子简化形式一下发现它可以 ...
- AcWing 874. 筛法求欧拉函数
#include<bits/stdc++.h> using namespace std; typedef long long ll; ; int primes[N],cnt; int ph ...
- C++模板:欧拉函数
单个欧拉函数 int eular(int n){ int ret=1,i; for(i=2;i*i<=n;i++) if(n%i==0){ n/=i,ret*=i-1; while(n%i==0 ...
- Farey Sequence (素筛欧拉函数/水)题解
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/ ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 数学知识-欧拉函数&快速幂
欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- Postman 基本操作学习
History 所有使用postman发送的request都会保存在这里.点击之后会在当前Tab打开. 参考: Requests History Environments 这里用来设定当前reques ...
- windows form (窗体) 之间传值小结
windows form (窗体) 之间传值小结 windows form (窗体) 之间传值小结 在windows form之间传值,我总结了有四个方法:全局变量.属性.窗体构造函数和deleg ...
- hdu4010 Query On The Trees
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- 常用的Linux操作一
Linux 常用的操作必须明白. 1.ls 和ll 列出文件的目录. 2.tail -f XXX 查看文件. 3.chmod -R 777 XXX.jar 赋予权限 4.cat 查看文件 -n 对 ...
- 用Lighttpd做图片服务器
http://www.lsanotes.cn/install_lighttpd 用Lighttpd做图片服务器 一.安装lighttpd所需的库文件1.安装 pcrewgetftp://ftp.csx ...
- myeclipse 8.5反编译插件失效
之前用的好好的,后来加了一个开发工作流的插件,今天打开之后发现反编译插件失效了,后来把开发工作流的插件删掉,又可以了,不知道撒原因,那位大神知道留下点痕迹吧
- hnsd11348tree(并查集)
Problem description A graph consists of a set of vertices and edges between pairs of vertices. Two v ...
- xcode6制作IOS .a静态库小记
xcode6制作IOS .a静态库小记 创建iOS静态库 简单写个打印的代码 编码完成之后,直接Run就能成功生成.a文件了,选择 xCode->Window->Organizer-> ...
- java生成Json工具之JsonSimple的使用
json-simple是由是Google开发的Java JSON解析框架,基于Apache协议.目前版本为1.1 项目主页:https://code.google.com/p/json-simple/ ...
- Linux 信号表
信号 取值 默认动作 含义(发出信号的原因) SIGHUP 1 Term 终端的挂断或进程死亡 SIGINT 2 Term 来自键盘的中断信号 SIGQUIT 3 Core 来自键盘的离开信号 SIG ...