codevs 1709 钉子和小球
1709 钉子和小球 1999年NOI全国竞赛
时间限制: 2 s
空间限制: 128000 KB
题目等级 : 大师 Master
题解
查看运行结果
题目描述 Description
有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。
我们知道小球落在第i个格子中的概率pi= ,其中i为格子的编号,从左至右依次为0,1,...,n。
现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。
输入描述 Input Description
第1行为整数n(2<=n<=50)和m(0<=m<=n)。以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。
输出描述 Output Description
仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。
样例输入 Sample Input
5 2
*
* .
* * *
* . * *
* * * * *
样例输出 Sample Output
7/16
数据范围及提示 Data Size & Hint
分类标签 Tags 点此展开
题解
f[i][j]表示落到第i层第j列的小球的个数。
如果(i,j)位置是‘*’时,它落到下一层左边和右边的几率是一样的,
f[i+1][j]+=f[i][j],f[i+1][j+1]+=f[i][j];
如果(i,j)位置是‘.’时,它直接落到下下层,因此他本该落到4个位置的球全部落到下下层,
f[i+2][j+1]+=(f[i][j]*4);
落到空隙的全部小球数目q=f[n+1][j](j从1到n+1)
最后将m+1(由于题目中m是从0开始数第m位,因此+1)位置的小球数目和全部小球数目q约分化简得到答案。
#include<cstdio>
#include<iostream>
using namespace std;
long long f[60][60],k,q;
char s[60][60];
int n,m;
long long gcd(long long x,long long y)//辗转相除法,求最大公约数
{
if (x%y==0) return y;
else gcd(y,x%y);
}
int main()
{
cin>>n>>m;
f[1][1]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=i;j++)
{
cin>>s[i][j];
if (s[i][j]=='*')
{
f[i+1][j]+=f[i][j];
f[i+1][j+1]+=f[i][j];
}
else if (s[i][j]=='.')
f[i+2][j+1]+=(f[i][j]*4);
}
for (int i=1;i<=n+1;i++)
k+=f[n+1][i];
q=gcd(f[n+1][m+1],k);
cout<<f[n+1][m+1]/q<<"/"<<k/q; }
附上一份wng的题解
根据概率求解
f(i,j)表示落在第i行第j列位置的概率
如果(i,j)位置是’*’, f(i+1,j)+=f(i,j)/2; f(i+1,j+1)+=f(i,j)/2;
如果(i,j)位置是’.’, f(i+2,j+1)+=f(i,j);
初始值:f(1,1)=1/1
f(n+1,m+1)即为所求。
/*
多次Wa的原因:
1<<n,应该(long long)1<<n
*/
#include <cstdio>
#include <iostream>
using namespace std;
const int maxn=55;
int n,m;
long long f[maxn][maxn];
char ch;
long long gcd(long long x,long long y){
if(x%y==0) return y;
return gcd(y,x%y);
}
int main(){
scanf("%d%d",&n,&m);
f[1][1]=(long long)1<<n;
for(int row=1;row<=n;row++){
for(int col=1;col<=row;col++){
do scanf("%c",&ch);
while(ch!='*'&&ch!='.');
if(ch=='*'){
f[row+1][col]+=f[row][col]/2;
f[row+1][col+1]+=f[row][col]/2;
}else f[row+2][col+1]+=f[row][col];
}
}
long long xi=gcd(f[n+1][m+1],(long long)1<<n);
cout<<f[n+1][m+1]/xi<<"/"<<((long long)1<<n)/xi<<endl;
return 0;
}
codevs 1709 钉子和小球的更多相关文章
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- 钉子和小球_DP
Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端 ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- [POJ1189][BZOJ1867][CODEVS1709]钉子和小球
题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...
- 【OpenJudge 191】【POJ 1189】钉子和小球
http://noi.openjudge.cn/ch0405/191/ http://poj.org/problem?id=1189 一开始忘了\(2^{50}\)没超long long差点写高精度Q ...
随机推荐
- <离散数学>学习笔记1--逻辑和证明
今天开始离散数学的自学旅程. 主题:逻辑和证明 逻辑规则给出数学语句的准确含义.逻辑对计算机科学有着重要作用.为了理解数学,我么必须理解正确的数学论证是由什么组成的.只要证明一个数学语句是真的,我们就 ...
- hdu 4424 & zoj 3659 Conquer a New Region (并查集 + 贪心)
Conquer a New Region Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- C++中的类和对象(一)
一,类的概念及封装 1.什么是封装 第一层含义:封装是面向对象程序设计最基本的特性.把数据(属性)和函数(方法)合成一个整体,这在计算机世界中是用类和对象实现的.(把属性和方法进行封装) 第二层含义: ...
- jiaocheng https://github.com/CarpenterLee/JCFInternals
https://github.com/CarpenterLee/JCFInternals
- 如何下载coursera视频
国内观看Coursera非常卡顿,经常播放到一半就卡死了,不知道什么原因.因此只能想办法下载下来之后再看. Github上有一个脚本点击打开链接,提供整门课程的下载服务.用着还是非常方便的,使用方法如 ...
- VS 制作安装包小窥
难得忙里偷闲,看到有关VS制作安装包,按下文小试一把,还行,比不上Installshield. 首先在打开 VS2010 > 文件 >新建项目 创建一个安装项目 XXX 在“目 ...
- [转] Java中的访问控制
可见/访问性 在同一类中 同一包中 不同包中 同一包子类中 不同包子类中 public yes yes yes yes yes protected yes yes no ...
- Composite 组合模式
简介 <大话设计模式>一书中组合模式的定义为:将对象组合成[树]形结构以表示[部分-整体]的层次结构,组合模式使得用户对[单个对象]和对[组合对象]的使用具有一致性. ...
- Vijos P1325桐桐的糖果计划(有向图双连通分量)
/*重边不能删 不能删 不能删...*/ #include<iostream> #include<cstdio> #include<cstring> #define ...
- ASP.NET图片验证码学习!
1. 新建一个Validate.aspx,然后在Validate.aspx.cs编写代码: using System; using System.Collections; using System.C ...