题目链接: BZOJ - 1502

题目分析

这是我做的第一道 Simpson 积分的题目。Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl...fr 的方法。自适应 Simpson 的自适应指的是,如果分成左右两端分别 Simpson 的和与对整段 Simpson 的差值不超过一个 Eps,那么就接受这个值,否则递归下去求两段的 Simpson 值。

代码

 #include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; typedef double LF; const LF Eps = 1e-; inline LF gmin(LF a, LF b) {return a < b ? a : b;}
inline LF gmax(LF a, LF b) {return a > b ? a : b;}
inline LF Sqr(LF x) {return x * x;} const int MaxN = + ; int n; LF Alpha, talpha, Ht, Lp, Rp, Ans;
LF A[MaxN], P[MaxN], Rad[MaxN], Ls[MaxN], Rs[MaxN], Lh[MaxN], Rh[MaxN]; inline LF f(LF x)
{
LF ret = 0.0;
for (int i = ; i <= n; ++i)
{
if (fabs(x - P[i]) < Rad[i]) ret = gmax(ret, sqrt(Sqr(Rad[i]) - Sqr(x - P[i])));
if (x > Ls[i] && x < Rs[i]) ret = gmax(ret, Lh[i] + (Rh[i] - Lh[i]) * (x - Ls[i]) / (Rs[i] - Ls[i]));
}
return ret;
} inline LF Simpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
return (fl + fmid * 4.0 + fr) / 6.0 * (r - l);
} LF RSimpson(LF l, LF r, LF fl, LF fmid, LF fr)
{
LF mid, p, q, x, y, z;
mid = (l + r) / 2.0;
p = f((l + mid) / 2.0);
q = f((mid + r) / 2.0);
x = Simpson(l, r, fl, fmid, fr);
y = Simpson(l, mid, fl, p, fmid);
z = Simpson(mid, r, fmid, q, fr);
if (fabs(x - y - z) < Eps) return y + z;
else return RSimpson(l, mid, fl, p, fmid) + RSimpson(mid, r, fmid, q, fr);
} int main()
{
scanf("%d%lf", &n, &Alpha);
talpha = tan(Alpha);
Ht = 0.0;
for (int i = ; i <= n + ; ++i)
{
scanf("%lf", &A[i]);
Ht += A[i];
P[i] = Ht / talpha;
}
Lp = P[]; Rp = P[n + ];
for (int i = ; i <= n; ++i)
{
scanf("%lf", &Rad[i]);
Lp = gmin(Lp, P[i] - Rad[i]);
Rp = gmax(Rp, P[i] + Rad[i]);
}
Rad[n + ] = 0.0;
for (int i = ; i <= n; ++i)
{
if (P[i + ] - P[i] > fabs(Rad[i + ] - Rad[i]))
{
Ls[i] = P[i] + Rad[i] * (Rad[i] - Rad[i + ]) / (P[i + ] - P[i]);
Rs[i] = P[i + ] + Rad[i + ] * (Rad[i] - Rad[i + ]) / (P[i + ] - P[i]);
Lh[i] = sqrt(Sqr(Rad[i]) - Sqr(Ls[i] - P[i]));
Rh[i] = sqrt(Sqr(Rad[i + ]) - Sqr(Rs[i] - P[i + ]));
}
else
{
Ls[i] = -;
Rs[i] = -;
}
}
Ans = RSimpson(Lp, Rp, f(Lp), f((Lp + Rp) / 2.0), f(Rp)) * ;
printf("%.2lf\n", Ans);
return ;
}

[BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】的更多相关文章

  1. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  2. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  3. 【bzoj 1502】月下柠檬树

    月下柠檬树 题意 求n个圆与他们的公切线的定积分. 解法 求出圆的公切线就可以了. 特别坑的一点 : 最两端的圆,有可能会被其他的圆所包含,所以要重新求一下最左端与最右端. 比较坑的一点 : 精度要设 ...

  4. 1502: [NOI2005]月下柠檬树 - BZOJ

    Description Input 文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度).第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的 ...

  5. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  6. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  7. 【BZOJ1502】【NOI2005】月下柠檬树 simpson 积分

    特别提醒:eps至少要5e-6 首先我们来研究下平行光对投影的影响. 一个二维的图形,若它与光屏平行,那么不论平行光与光屏的夹角为多少,所得图形与原图形全等的(只是位置会有影响) 通过这么一分析,我们 ...

  8. 1502: [NOI2005]月下柠檬树

    一堆圆台平行光的投影 在草稿纸上画一下,发现对于一个圆,它投影完还是一个半径不变的圆. 定义树的轴在投影平面上经过的点为原点,定一个正方向,建立平面直角坐标系, 能发现,对于一个半径为\(r\),高度 ...

  9. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

随机推荐

  1. 关于PreferenceActivity的使用和一些问题的解决(自己定义Title和取值)

    android的Setting往往用PreferenceActivity来写的 我们在建立layout文件: <PreferenceScreen xmlns:android="http ...

  2. nginx图片过滤处理模块http_image_filter_module安装配置笔记

    http_image_filter_module是nginx提供的集成图片处理模块,支持nginx-0.7.54以后的版本,在网站访问量不是很高磁盘有限不想生成多余的图片文件的前提下可,就可以用它实时 ...

  3. 即时通讯(IM)

    即时通讯(IM)功能是APP的重要功能之一,而开发好移动IM却绝非易事.通常来说,IM技术选型至少要解决以下问题:1. 协议选型 2. IM服务器选型 3. 对协议和服务器做相应修改,通常来说直接拿个 ...

  4. Android_设备隐私获取,忽略6.0权限管理

    1.前言 (1).由于MIUI等部分国产定制系统也有权限管理,没有相关api,故无法判断用户是否允许获取联系人等隐私.在Android 6.0之后,新增权限管理可以通过官方api判断用户的运行状态: ...

  5. BTrace: DTrace for Java2

    BTrace: DTrace for Java… ish 时间 2012-04-24 16:17:55  dtrace.org 原文  http://dtrace.org/blogs/ahl/2012 ...

  6. (转载)为啥我们要学习Linux

    学习Linux也有一阵子了,这过程中磕磕撞撞的,遇到了问题,也解决了一些问题,学习的路子是曲折的,想总结点啥的,让刚刚学习Linux的不会望而生畏. 为啥我们要学习Linux 技术的价值不在于这个技术 ...

  7. H TML5 之 (5) 一个在线画图板

    这里加入了点难度了,增加了对HTML很多时间的把握,对象的把握 index.html <!DOCTYPE HTML> <html> <head> <title ...

  8. (转)Apache2 httpd.conf 配置详解 (二)

    转之--http://jafy00.blog.51cto.com/2594646/508205 DocumentRoot "/usr/local/apache-2.2.6/htdocs&qu ...

  9. Windows环境下使用Cmake ndk编译fdk-aac

     一.废话 最近学习,第一步就是编译.我们需要编译FFmpag,x264,fdk_aac,下面是x264,网上说的很多都是几百年前的,我亲测完美可用 还是那句话 我能力有限,但是我希望我写的东西能够让 ...

  10. js基础知识之_函数

    javascript函数 函数概念 将完成某一特定功能的代码集合起来,可以重复使用 白话函数理解-函数就是一个工厂,帮大家实现某一个功能 优点 -时程序更加简洁 -逻辑更有条例 -调用方便 -维护更加 ...