Warm up

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 5093    Accepted Submission(s):
1131

Problem Description
  N planets are connected by M bidirectional channels
that allow instant transportation. It's always possible to travel between any
two planets through these channels.
  If we can isolate some planets from
others by breaking only one channel , the channel is called a bridge of the
transportation system.
People don't like to be isolated. So they ask what's
the minimal number of bridges they can have if they decide to build a new
channel.
  Note that there could be more than one channel between two
planets.
 
Input
  The input contains multiple cases.
  Each case
starts with two positive integers N and M , indicating the number of planets and
the number of channels.
  (2<=N<=200000, 1<=M<=1000000)
  Next
M lines each contains two positive integers A and B, indicating a channel
between planet A and B in the system. Planets are numbered by 1..N.
  A line
with two integers '0' terminates the input.
 
Output
  For each case, output the minimal number of bridges
after building a new channel in a line.
 
Sample Input
4 4
1 2
1 3
1 4
2 3
0 0
 
Sample Output
0
 
题意:n个点m条边,问新建一条边,可以让桥的数量达到最少,输出最少的桥数
 
题解:先求出所有的桥的数量,将桥连接的各个图进行缩点,根据树的直径的求法,求出最长的路径,用桥数量减去树的直径
//scc代表 双联通分量  写习惯了 顺手就写成scc了也懒得改了
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
#define MAXM 2000100
#define MAX 200100
#define INF 0x7fffff
using namespace std;
int n,m,bridge,sum;
int low[MAX],dfn[MAX];
int head[MAX],ans,age;
int sccno[MAX];//代表当前点属于哪个双连通分量
int dfsclock,scccnt;
vector<int>newmap[MAX];//储存缩点后的新图
int instack[MAX];//标记当前点是否入栈
int dis[MAX];//求树的直径时记录路径的长度
int vis[MAX];//求树的直径时标记是否入队列
stack<int>s;
struct node
{
int beg,end,next;
}edge[MAXM];
void init()
{
ans=0;
bridge=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
}
void tarjan(int u,int fa)
{
int v,i;
low[u]=dfn[u]=++dfsclock;
instack[u]=1;
s.push(u);
int flag=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(flag&&v==fa)//判重边
{
flag=0;
continue;
}
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(dfn[u]<low[v])
bridge++;
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
scccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
sccno[v]=scccnt;
if(v==u)
break;
}
}
}
void find()
{
int i;
memset(low,0,sizeof(low));
memset(sccno,0,sizeof(sccno));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
dfsclock=scccnt=0;
for(i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i,-1);
}
}
void suodian()
{
int u,v,i,j;
for(i=1;i<=scccnt;i++)
newmap[i].clear();
for(i=0;i<ans;i=i+2)
{
u=sccno[edge[i].beg];
v=sccno[edge[i].end];
if(u!=v)
{
newmap[u].push_back(v);
newmap[v].push_back(u);
}
}
}
void bfs(int beg)
{
queue<int>q;
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
int i,j;
while(!q.empty())
q.pop();
sum=0;
age=beg;
vis[beg]=1;
q.push(beg);
int u;
while(!q.empty())
{
u=q.front();
q.pop();
for(i=0;i<newmap[u].size();i++)
{
if(!vis[newmap[u][i]])
{
dis[newmap[u][i]]=dis[u]+1;
vis[newmap[u][i]]=1;
q.push(newmap[u][i]);
if(sum<dis[newmap[u][i]])
{
sum=dis[newmap[u][i]];
age=newmap[u][i];
}
}
}
}
}
void solve()
{
int i,j;
bfs(1);
bfs(age);
printf("%d\n",bridge-sum);
//printf("%d\n%d\n",bridge,sum);
}
int main()
{
while(scanf("%d%d",&n,&m),n|m)
{
init();
getmap();
find();
//printf("%d#\n",bridge);
suodian();
solve();
}
return 0;
}

  

 

hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】的更多相关文章

  1. hdoj 3861 The King’s Problem【强连通缩点建图&&最小路径覆盖】

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

  3. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. hdu 4612 Warm up 双连通+树形dp思想

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total S ...

  5. POJ 3352 Road Construction(边双连通分量,桥,tarjan)

    题解转自http://blog.csdn.net/lyy289065406/article/details/6762370   文中部分思路或定义模糊,重写的红色部分为修改过的. 大致题意: 某个企业 ...

  6. HDU-4612 Warm up,tarjan求桥缩点再求树的直径!注意重边

    Warm up 虽然网上题解这么多,感觉写下来并不是跟别人竞争访问量的,而是证明自己从前努力过,以后回头复习参考! 题意:n个点由m条无向边连接,求加一条边后桥的最少数量. 思路:如标题,tarjan ...

  7. 2013杭州网赛 1001 hdu 4738 Caocao's Bridges(双连通分量割边/桥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题意:有n座岛和m条桥,每条桥上有w个兵守着,现在要派不少于守桥的士兵数的人去炸桥,只能炸一条桥 ...

  8. poj3694+hdu2460 求桥+缩点+LCA/tarjan

    这个题使我更深理解了TARJAN算法,题意:无向图,每添加一条边后文桥的数量,三种解法:(按时间顺序),1,暴力,每每求桥,听说这样能过,我没过,用的hash判重,这次有俩个参数(n->10w, ...

  9. hdu4738(边双连通分量,桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. Almeza MultiSet Pro(批量安装程序) V8.7.6中文特别版

    Almeza MultiSet Pro(批量安装程序)是一款非常实用的工具.它能够帮你批量地安装常用的软件.这将解决每次重装系统后能够快速方便地重装常用软件.使用这款软件不需要编写程序,还可以在安装过 ...

  2. bzoj 1314: River过河 优先队列

    1314: River过河 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 26  Solved: 10[Submit][Status][Discuss ...

  3. Android编程中常用的PopupWindow和Dialog对话框

    注意:PopupWindow组件的使用问题,PopupWindow是一个阻塞对话框,如果你直接在Activity创建的方法中显示它,则会报错:android.view.WindowManager$Ba ...

  4. JniHelper 含安卓推送

    using System; using System.Runtime.CompilerServices; using UnityEngine; internal static class JniHel ...

  5. Python 标准库 urllib2 的使用细节

    刚好用到,这篇文章写得不错,转过来收藏.    转载自 道可道 | Python 标准库 urllib2 的使用细节 Python 标准库中有很多实用的工具类,但是在具体使用时,标准库文档上对使用细节 ...

  6. IgnoreRoute——注册路由

    routes.IgnoreRoute("home/about"); 这句话,当Route遇到Home/About的Url时,这段URL将被忽略. 效果图 需要注意的是这里route ...

  7. [JAVA]HDU 4919 Exclusive or

    题意很简单, 就是给个n, 算下面这个式子的值. $\sum\limits_{i=1}^{n-1} i \otimes (n-i)$ 重点是n的范围:2≤n<10500 比赛的时候 OEIS一下 ...

  8. 李洪强漫谈iOS开发[C语言-036]-C语言前四天学习小结

  9. C++如何处理内联虚函数

    http://blog.csdn.net/hedylin/article/details/1775556 当一个函数是内联和虚函数时,会发生代码替换或使用虚表调用吗? 为了弄清楚内联和虚函数,让我们将 ...

  10. 基于ASP.NET的comet简单实现 http长连接,IAsyncResult

    http://www.cnblogs.com/hanxianlong/archive/2010/04/27/1722018.html 我潜水很多年,今天忽然出现.很久没写过博客了,不是因为不想写,而是 ...