注意到当操作确定后,显然操作顺序总是涂黑色的1操作->涂白色的1操作->2操作

用$b/w_{r/c}(i,j)$表示$(i,j)$是否被黑色/白色 横着/竖着 涂过(1表示涂过,0表示没有),注意到当这些信息被确定后,已经可以确定是否可行以及对应的代价

具体的,考虑一个格子$(i,j)$,对其进行分析——

注意到$b_{r}(i,j)=w_{r}(i,j)=1$一定不优秀(严格,$c$类似),证明对其分三类讨论:

1.若对应的两次操作不相互包含,则可以缩短黑色操作

2.若其中白色操作包含黑色,则可以直接去掉黑色操作

3.若其中黑色操作包含白色操作,则可以将黑色操作拆成两段并去掉白色操作(注意到白色操作覆盖的段已经被涂两次,不会再有别的操作)

根据此性质,再对其颜色分类讨论:

1.若其要求最终为黑色,则要求$w_{r}(i,j)=w_{c}(i,j)=0$,并且若$b_{r}(i,j)=b_{c}(i,j)=0$则还要用2操作涂黑(即额外产生$c$的代价),另外显然其一定不会被涂超过2次

2.若其要求最终为白色,根据之前的性质即要求$b_{r}(i,j)\and b_{c}(i,j)=0$,并且若$b_{r}(i,j)=1$且$w_{c}(i,j)=0$(或$b_{c}(i,j)=1$且$w_{r}(i,j)=0$)则还要用1操作涂白

另外,还要求1操作的代价,关于$a$即每一个格子会产生$\sum b/w_{r/c}(i,j)$个$a$的代价,关于$b$考虑操作的起点,也即对于$b_{r}(i,j)=1$且$b_{r}(i,j-1)=0$($w$和$c$类似)的格子会再产生$b$的代价

关于这个问题,容易想到最小割,下面描述建图——

对每一个$b/w_{r/c}(i,j)$建立一个点,从$S$向$b_{r}/w_{c}(i,j)$连边$,b_{c}/w_{r}(i,j)$向$T$连边(边权均为$a$,即割表示对应的值选1),进而在这个基础结构上,依次考虑上面的限制和代价:

1.要求$b_{r}(i,j)$和$w_{r}(i,j)$($c$类似)不同时为1,那么从$w_{r}(i,j)$向$b_{r}(i,j)$连一条边权为$\infty$的边即可

2.要求最终为黑色的点$w_{r}(i,j)=w_{c}(i,j)=0$,那么从$w_{r/c}(i,j)$再向$T$连一条边权为$\infty$的边即可

3.若最终为黑色的点$b_{r}(i,j)=b_{c}(i,j)=0$则产生$c$的代价,那么从$b_{r}(i,j)$向$b_{c}(i,j)$连一条边权为$c$的边即可

4.要求最终为白色的点$b_{r}(i,j)\and b_{c}(i,j)=0$,那么从$b_{c}(i,j)$向$b_{r}(i,j)$连一条边权为$\infty$的边即可

5.若最终为白色的点$b_{r}(i,j)=1$且$w_{c}(i,j)=0$(另一种类似)则产生$c$的代价,那么从$w_{c}(i,j)$向$b_{r}(i,j)$连一条边权为$c$的边,注意到若$b_{r}(i,j)$没被割掉或$w_{c}(i,j)$被割掉该边显然不需要被割掉,同时当两者均不成立时(即所要求的情况)则$b_{r}(i,j)$必然存在一条路径,进而即会要求其被割掉

6.若$b_{r}(i,j)=1$且$b_{r}(i,j-1)=0$则产生$b$的代价($w$和$c$类似),那么从$b_{r}(i,j-1)$向$b_{r}(i,j)$连一条边权为$b$的边,正确性与5类似(特别的,还需要从$S$再向$b_{r}(i,1)$连一条边权为$b$的边)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 45
4 #define maxV N*N*4
5 #define maxE N*N*30
6 #define oo 0x3f3f3f3f
7 struct Edge{
8 int nex,to,len;
9 }edge[maxE];
10 queue<int>q;
11 int n,m,V,E,a,b,c,ans,br[N][N],bc[N][N],wr[N][N],wc[N][N],head[maxV],work[maxV],d[maxV];
12 char s[N][N];
13 void add(int x,int y,int z){
14 edge[E]=Edge{head[x],y,z};
15 head[x]=E++;
16 if (E&1)add(y,x,0);
17 }
18 bool bfs(){
19 memset(d,oo,sizeof(d));
20 d[0]=0,q.push(0);
21 while (!q.empty()){
22 int k=q.front();
23 q.pop();
24 for(int i=head[k];i!=-1;i=edge[i].nex)
25 if ((edge[i].len)&&(d[edge[i].to]==oo)){
26 d[edge[i].to]=d[k]+1;
27 q.push(edge[i].to);
28 }
29 }
30 return d[V]!=oo;
31 }
32 int dfs(int k,int s){
33 if (k==V)return s;
34 int ans=0;
35 for(int &i=head[k];i!=-1;i=edge[i].nex)
36 if ((edge[i].len)&&(d[edge[i].to]==d[k]+1)){
37 int p=dfs(edge[i].to,min(s,edge[i].len));
38 edge[i].len-=p,edge[i^1].len+=p,s-=p,ans+=p;
39 if (!s)return ans;
40 }
41 return ans;
42 }
43 int main(){
44 scanf("%d%d%d%d%d",&n,&m,&a,&b,&c);
45 for(int i=1;i<=n;i++)scanf("%s",s[i]+1);
46 for(int i=1;i<=n;i++)
47 for(int j=1;j<=m;j++){
48 br[i][j]=++V,bc[i][j]=++V;
49 wr[i][j]=++V,wc[i][j]=++V;
50 }
51 V++;
52 memset(head,-1,sizeof(head));
53 for(int i=1;i<=n;i++)
54 for(int j=1;j<=m;j++){
55 add(0,br[i][j],a),add(0,wc[i][j],a);
56 add(bc[i][j],V,a),add(wr[i][j],V,a);
57 add(wr[i][j],br[i][j],oo);
58 add(bc[i][j],wc[i][j],oo);
59 if (s[i][j]=='#'){
60 add(wr[i][j],V,oo),add(0,wc[i][j],oo);
61 add(br[i][j],bc[i][j],c);
62 }
63 else{
64 add(bc[i][j],br[i][j],oo);
65 add(wc[i][j],br[i][j],c);
66 add(bc[i][j],wr[i][j],c);
67 }
68 if (j==1)add(0,br[i][j],b),add(wr[i][j],V,b);
69 else add(br[i][j-1],br[i][j],b),add(wr[i][j],wr[i][j-1],b);
70 if (i==1)add(bc[i][j],V,b),add(0,wc[i][j],b);
71 else add(bc[i][j],bc[i-1][j],b),add(wc[i-1][j],wc[i][j],b);
72 }
73 memcpy(work,head,sizeof(head));
74 while (bfs()){
75 ans+=dfs(0,oo);
76 memcpy(head,work,sizeof(head));
77 }
78 printf("%d\n",ans);
79 return 0;
80 }

[Aizu1410]Draw in Straight Lines的更多相关文章

  1. CF961D Pair Of Lines

    题目描述 You are given n n n points on Cartesian plane. Every point is a lattice point (i. e. both of it ...

  2. CodeForces - 961D:Pair Of Lines (几何,问两条直线是否可以覆盖所有点)

    You are given n points on Cartesian plane. Every point is a lattice point (i. e. both of its coordin ...

  3. Codeforces 961 D Pair Of Lines

    题目描述 You are given nn points on Cartesian plane. Every point is a lattice point (i. e. both of its c ...

  4. Educational Codeforces Round 41 (Rated for Div. 2) D. Pair Of Lines (几何,随机)

    D. Pair Of Lines time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  5. Educational Codeforces Round 41 (Rated for Div. 2) ABCDEF

    最近打的比较少...就只有这么点题解了. A. Tetris time limit per test 1 second memory limit per test 256 megabytes inpu ...

  6. [Swift]LeetCode1035.不相交的线 | Uncrossed Lines

    We write the integers of A and B (in the order they are given) on two separate horizontal lines. Now ...

  7. 快速切题 sgu135. Drawing Lines

    135. Drawing Lines time limit per test: 0.25 sec. memory limit per test: 4096 KB Little Johnny likes ...

  8. codeforces 872E. Points, Lines and Ready-made Titles

    http://codeforces.com/contest/872/problem/E E. Points, Lines and Ready-made Titles time limit per te ...

  9. 【leetcode】1035. Uncrossed Lines

    题目如下: We write the integers of A and B (in the order they are given) on two separate horizontal line ...

随机推荐

  1. mysql从零开始之MySQL DELETE 语句

    MySQL DELETE 语句 你可以使用 SQL 的 DELETE FROM 命令来删除 MySQL 数据表中的记录. 你可以在 mysql> 命令提示符或 PHP 脚本中执行该命令. 语法 ...

  2. 创业公司用 Serverless,到底香不香?

    作者 | Mike Butusov 来源 | Serverless 公众号 在过去的 5 年里,使用云厂商处理应用后台的流行程度大幅飙升.其一,初创企业主采用 Serverless 方式,以节省基础设 ...

  3. VMware中Linux虚拟机与Windows主机共享文件夹

    VMware下Linux虚拟机与Windows主机共享文件夹 1. 安装vm-tool 2. 开启共享文件夹 虚拟机->设置->选项->共享文件夹"右边选择"总是 ...

  4. PTA实验11-1-7 藏头诗 (15分)

    实验11-1-7 藏头诗 (15分) 本题要求编写一个解密藏头诗的程序. 输入格式: 输入为一首中文藏头诗,一共四句,每句一行.注意:一个汉字占两个字节. 输出格式: 取出每句的第一个汉字并连接在一起 ...

  5. Windows用cmd编译运行C程序

    在Windows环境下用命令行编译运行程序 浙江大学-C语言程序设计进阶 配置gcc 准备一个Dev-cpp 找到gcc.exe所在目录 Dev-Cpp\MinGW64\bin 地址栏右键将地址复制为 ...

  6. VS2019中安装2017,2015

    VS2019中安装2017,2015

  7. Flask 易错点

    1.With上下文管理器 常用: with open("file_name","wb") as f: f.write("hello flask&quo ...

  8. 算法:拉丁方阵(Latin Square)

    拉丁方阵(英语:Latin square)是一种 n × n 的方阵,在这种 n × n 的方阵里,恰有 n 种不同的元素,每一种不同的元素在同一行或同一列里只出现一次.以下是两个拉丁方阵举例: 拉丁 ...

  9. linux wifi热点服务脚本

    最近有关wifi热点的驱动,启动参数都调试完了,验证可以连接传输数据. 首先要在系统启动脚本中插入wifi驱动,配置wlan0的ip insmod /system/vendor/modules/818 ...

  10. nod_1004 n^n的末位数字(二分快速幂)

    题意: 给出一个整数N,输出N^N(N的N次方)的十进制表示的末位数字. Input 一个数N(1 <= N <= 10^9) OutPut 输出N^N的末位数字 思路: EASY,,,, ...