[cf1349D]Slime and Biscuits
枚举最终的获得所有饼干的人$i$(以下简称"获胜者"),对于$i$获胜的情况,令其贡献为游戏轮数,否则其贡献为0,记$F_{i}$为期望贡献(即所有情况概率*贡献之和),答案即为$\sum_{i=1}^{n}F_{i}$
但此时的$F_{i}$比较复杂,其不仅取决于第$i$个人的饼干数量,还取决于别人的饼干数量,因为如果有一个人先获得了所有饼干,虽然游戏还可以继续,但$i$并不是获胜者
虽然如此,我们还是先算出在不管其他人的情况下(即另一个人获得所有饼干游戏并不结束),有$i$个饼干的人获胜的期望轮数$G_{i}$,则有$G_{a_{i}}=\sum_{j=1}^{n}F_{j}+(1-p_{i})G_{0}$
关于这个式子,$\sum_{j=1}^{n}g_{j}$即为游戏的期望轮数,那么这么多轮后,有$1-p_{i}$的概率并不是$i$获胜,而对于$G_{a_{i}}$来说此时还没有结束,而$i$必然只有0张牌,即还需要$G_{0}$步
将所有$i$累加,即$\sum_{i=1}^{n}G_{a_{i}}=n\sum_{j=1}^{n}F_{j}+(n-1)G_{0}$
由此,可以得到$\sum_{j=1}^{n}F_{j}=\frac{\sum_{i=1}^{n}G_{a_{i}}-(n-1)G_{0}}{n}$,下面考虑如何求出$G_{i}$,显然有转移
$$
\begin{cases}G_{S}=0\\G_{0}=\frac{n-2}{n-1}G_{0}+\frac{1}{n-1}G_{1}+1\\G_{i}=\frac{i}{S}G_{i-1}+\frac{S-i}{S}(\frac{1}{n-1}G_{i+1}+\frac{n-2}{n-1}G_{i})+1&(1\le i<S)\end{cases}
$$
将其变形,即有
$$
\begin{cases}G_{S}=0\\G_{0}=G_{1}+(n-1)\\\frac{S-i}{n-1}(G_{i}-G_{i+1})=i(G_{i-1}-G_{i})+S&(1\le i<S)\end{cases}
$$
记$g_{i}=G_{i}-G_{i+1}$,代入即
$$
\begin{cases}g_{0}=n-1\\g_{i}=\frac{n-1}{S-i}(i\cdot g_{i-1}+S)&(1\le i<S)\end{cases}
$$
由此即可算出$g_{i}$,再通过$G_{i}=\sum_{j=i}^{S-1}g_{j}$也即可算出$G_{i}$,进而也即可求出答案
总复杂度为$o(S)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define mod 998244353
5 #define ll long long
6 int n,m,ans,inv[N],a[N],g[N],G[N];
7 int main(){
8 inv[0]=inv[1]=1;
9 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
10 scanf("%d",&n);
11 for(int i=1;i<=n;i++){
12 scanf("%d",&a[i]);
13 m+=a[i];
14 }
15 g[0]=n-1;
16 for(int i=1;i<m;i++){
17 int s=(ll)(n-1)*inv[m-i]%mod;
18 g[i]=((ll)i*g[i-1]+m)%mod*s%mod;
19 }
20 for(int i=m-1;i>=0;i--)G[i]=(G[i+1]+g[i])%mod;
21 ans=mod-(ll)(n-1)*G[0]%mod;
22 for(int i=1;i<=n;i++)ans=(ans+G[a[i]])%mod;
23 ans=(ll)ans*inv[n]%mod;
24 printf("%d",ans);
25 }
[cf1349D]Slime and Biscuits的更多相关文章
- Solution -「CF 1349D」Slime and Biscuits
\(\mathcal{Description}\) Link. 有 \(n\) 堆饼干,一开始第 \(i\) 堆有 \(a_i\) 块.每次操作从所有饼干中随机一块,将其随机丢到另外一堆.求所 ...
- [题解] Codeforces 1349 D Slime and Biscuits 概率,推式子,DP,解方程
题目 神题.很多东西都不知道是怎么凑出来的,随意设置几个变量,之间就产生了密切的关系.下次碰到这种题应该还是不会做罢. 令\(E_x\)为最后结束时所有的饼干都在第x个人手中的概率*时间的和.\(an ...
- 更新lispbox中的ccl和slime版本
首先C-x C-f然后输入~,找到.emacs文件,根据slime官方文档说明的添加如下代码到文件末尾,重启一下emacs,slime就编译好了,然后这段代码就可以删除.否则每次启动emacs就算不用 ...
- Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) A. Slime Combining 水题
A. Slime Combining 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2768 Description Your frien ...
- 编写php拓展实例--slime项目(用户登录会话类)
最近公司换了yaf框架,突然对用c实现php拓展感兴趣了,如果一个功能已经很稳定很成熟而且用的地方很多,那么我们就可以尝试用拓展实现(不一定每种情况都可以写成拓展),写成拓展后就不用每次用都包含一 ...
- Windows下安装Emacs+Sbcl+Slime
前言 其实网上已经有很多类似的文章了,我也是按照上面的来做.在做的过程中会遇到几个很坑的地方,我自己也是折腾了好久才弄好.所以现在写出来希望能对大家有所帮助. 正文 下载和安装Emacs http:/ ...
- slime+sbcl for common lisp
sudo apt-get install slime audo apt-get install sbcl ;;sbcl+slime for common lisp ;;sudo apt-get ins ...
- Common Lisp学习笔记(0):从SLIME开始 | 优哉·幽斋
Common Lisp学习笔记(0):从SLIME开始 | 优哉·幽斋 Common Lisp学习笔记(0):从SLIME开始
- 在 Emacs 中如何退出 Slime Mode
1.在 Slime 的 Buffer 中按逗号“,”: 2.在 Command 后输入:sayoonara 3.回车,确认. ================ 退出 SBCL 输入:(sb-ext:q ...
随机推荐
- requirejs的加载原理 - 场景1. 定义一个require依赖a模块
我们学习一个新的技术,熟练的使用之后,就应该去探索它的原理.这篇文章我们来探索下requirejs的原理. 从4个场景来探索requirejs的原理 场景1. 定义一个require依赖b模块 场景2 ...
- 微信小程序 开发 “婚礼邀请函”
成品展示: 5个页面 我们来讲解哈(上面地图位置随便定的点) 1.首页开发 一开始进来显示首页 然后默认开始播放背景音乐,这个背景音乐点击右上角图标可以暂停(有动画),然后点击新郎和新娘文字可以调到 ...
- 分片利器 AutoTable:为用户带来「管家式」分片配置体验
在<DistSQL:像数据库一样使用 Apache ShardingSphere>一文中,Committer 孟浩然为大家介绍了 DistSQL 的设计初衷和语法体系,并通过实战操作展示了 ...
- WPF之资源专题
1.一般程序的资源可以分为四个等级: 数据库中的数据相当于放在仓库里 资源文件里的数据相当于放在旅行箱里 WPF对象资源里的数据相当于携带在背包里 变量中的数据相当于拿在手里 2.资源的查找顺序是沿着 ...
- 洛谷1501 Tree II(LCT,路径修改,路经询问)
这个题是一个经典的维护路径信息的题,对于路径上的修改,我们只需要把对应的链\(split\)上来,然后修改最上面的点就好,注意pushdown的时候的顺序是先乘后加 然后下传乘法标记的时候,记得把对应 ...
- 使用YApi搭建API接口管理工具(docker安装)
使用YApi搭建API接口管理工具(docker安装) 工具描述 YApi 是高效.易用.功能强大的 api 管理平台,旨在为开发.产品.测试人员提供更优雅的接口管理服务.可以帮助开发者轻松创建.发布 ...
- 第五课第四周笔记3:Multi-Head Attention多头注意力
Multi-Head Attention多头注意力 让我们进入并了解多头注意力机制. 符号变得有点复杂,但要记住的事情基本上只是你在上一个视频中学到的自我注意机制的四个大循环. 让我们看一下每次计算自 ...
- 欧姆龙PLC HostLink协议整理
欧姆龙PLC HostLink协议整理 1.常用的存储器功能区 CIO: 输入继电器 272 点(17 CH) 0.00-16.15 输出继电器 272 点(17 CH) 100.00-116.1 ...
- [CSP-S2021] 括号序列
链接: P7914 题意: 有一堆规则,然后判断给定字符串有多少种填法符合规则. 分析: 一眼区间dp,状态数 \(n^2\),我们来分析这些规则. 把这些规则分成三类,第一类可以预处理出区间是否能表 ...
- error: ‘int64_t’ does not name a type
我在CodeBlock中编译工程没有出现问题,但是放到ubuntu上用自己写的Makefile make的时候报错 error: 'int64_t' does not name a type # 2 ...