[NOI2020] 美食家
很好,自己会做NOI签到题了,去年只要会这题,再多打点暴力,\(Ag\)到手,希望今年\(NOI\)同步赛过\(Ag\)线吧,得有点拿得出手的成绩证明啊。
考虑\(T\)非常大,\(n\)又很小。
想到了矩乘。
经典操作矩乘,\(k\)条边最短路,这东西去年泉州集训还做过。
那么就是有\(T\)天,考虑把一个需要\(k\)天的操作拆成\(k\)个点,只在到二向最后那个点连一条带权边,其他都不连。
那么直接\(O((5n) ^ 3 log T)\)
但是考虑到有派对操作,最开始看错题目,以为\(k <= 10\),那直接就\(2^k\)冲了。
但是\(k <= 200\),我们只要把这\(k\)天派对单独拉出来,发现这个单天派对其实只有矩阵不一样,单独处理一下就好。
那么操作复杂度是\(O((5n) ^ 3 k log T)\)
注意要处理出\(G^1,G^2,G^4,.....G^23\)的结果。
[NOI2020] 美食家的更多相关文章
- [XIN算法应用]NOI2020美食家
XIN(\(updated 2021.6.4\)) 对于很多很多的题目,发现自己并不会之后,往往会直接冲上一个XIN队算法,然而,这样 \(\huge{\text{鲁莽}}\) 的行为只能获得 TLE ...
- [NOI2020]美食家 题解
题意分析 给出一个带权有向图,要求从节点 $1$ 出发,经过恰好 $T$ 的边权和,回到节点 $1$ ,求可经过的最大点权和.特别地,经过的边权和达到部分特殊数时,会有某个点的点权发生改变. 思路分析 ...
- P6772 [NOI2020]美食家
题目大意 给你一个 \(n\) 个点,\(m\) 条边的有向图,每条边有一个权值 \(w_i\) ,每个节点有一个权值 \(a_i\) . 你从节点 \(1\) 出发,每经过一个节点就可以获得该点的权 ...
- 洛谷 P6772 - [NOI2020]美食家(广义矩阵快速幂)
题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,第 \(0\) 天的时候你在 \(1\) 号城市,第 \(T\) 天的时候你要回到 \(1\) 号城市. 每条边上的边权表示从城 ...
- 【NOI2020】美食家(矩阵)
Description 给定一张有向图,\(n\) 个顶点,\(m\) 条边.第 \(i\) 条边从 \(u_i\) 到 \(v_i\),走完该边的用时为 \(w_i\).每一个点有一个价值 \(c\ ...
- XIN队算法
XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...
- BZOJ 1691: [Usaco2007 Dec]挑剔的美食家 [treap 贪心]
1691: [Usaco2007 Dec]挑剔的美食家 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 786 Solved: 391[Submit][S ...
- [BZOJ1691][Usaco2007 Dec]挑剔的美食家
[BZOJ1691][Usaco2007 Dec]挑剔的美食家 试题描述 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了. ...
- BZOJ 1691: [Usaco2007 Dec]挑剔的美食家( 平衡树 )
按鲜嫩程度排个序, 从大到小处理, 用平衡树维护价值 ---------------------------------------------------------------------- #i ...
随机推荐
- 【UE4 设计模式】单例模式 Singleton Pattern
概述 描述 保证一个类只有一个实例 提供一个访问该实例的全局节点,可以视为一个全局变量 仅在首次请求单例对象时对其进行初始化. 套路 将默认构造函数设为私有, 防止其他对象使用单例类的 new运算符. ...
- [对对子队]会议记录4.11(Scrum Meeting 2)
今天已完成的工作 何瑞 工作内容:完成指令的衔接:完成合成指南界面的制作:初步实现成本系统 相关issue:实现用户指令编辑系统的逻辑 马嘉 工作内容:完成游戏内暂停界面 相关issu ...
- Noip模拟77 2021.10.15
T1 最大或 $T1$因为没有开$1ll$右移给炸掉了,调了一年不知道为啥,最后实在不懂了 换成$pow$就过掉了,但是考场上这题耽误了太多时间,后面的题也就没办法好好打了.... 以后一定要注意右移 ...
- 『学了就忘』Linux基础 — 4、VMware安装
目录 1.VMware介绍 2.VMware主要特点 3.VMware建议配置 4.VMware安装 1.VMware介绍 VMware是一个虚拟PC的软件,可以在现有的操作系统上虚拟出一个新的硬件环 ...
- 上拉电阻大小对i2c总线的影响
漏极开路上拉电阻取值为何不能很大或很小? 如果上拉电阻值过小,Vcc灌入端口的电流(Ic)将较大,这样会导致MOS管V2(三极管)不完全导通(Ib*β<Ic),有饱和状态变成放大状态,这样端口输 ...
- 链地址法查找成功与不成功的平均查找长度ASL
晚上,好像是深夜了,突然写到这类题时遇到的疑惑,恰恰这个真题只让计算成功的ASL,但我想学一下不成功的计算,只能自己来解决了,翻了李春葆和严蔚敏的教材没有找到相关链地址法的计算,于是大致翻到两篇不错的 ...
- 洛谷 P5665 [CSP-S2019] 划分
链接: P5665 题意: 给出 \(n\) 个整数 \(a_i\) ,你需要找到一些分界点 \(1 \leq k_1 \lt k_2 \lt \cdots \lt k_p \lt n\),使得 \( ...
- DDD领域驱动设计架构模式:防腐层(Anti-corruption layer)
在微服务(Microservices)架构实践中,架构设计借用了DDD中的一些概念和技术,比如一个微服务对应DDD中的一个限界上下文(Bounded Context):在微服务设计中应该首先识别出DD ...
- python网站(持续更新)
python官网: https://www.python.org/ python文档:中文 https://docs.python.org/zh-cn/3/ pypi网站: https://pypi. ...
- .Net(c#)汉字和Unicode编码互相转换实例
{"name": "\u676d\u5dde", "href": "www.baidu.com"} 经常遇到这样内容的j ...