很好,自己会做NOI签到题了,去年只要会这题,再多打点暴力,\(Ag\)到手,希望今年\(NOI\)同步赛过\(Ag\)线吧,得有点拿得出手的成绩证明啊。

考虑\(T\)非常大,\(n\)又很小。

想到了矩乘。

经典操作矩乘,\(k\)条边最短路,这东西去年泉州集训还做过。

那么就是有\(T\)天,考虑把一个需要\(k\)天的操作拆成\(k\)个点,只在到二向最后那个点连一条带权边,其他都不连。

那么直接\(O((5n) ^ 3 log T)\)

但是考虑到有派对操作,最开始看错题目,以为\(k <= 10\),那直接就\(2^k\)冲了。

但是\(k <= 200\),我们只要把这\(k\)天派对单独拉出来,发现这个单天派对其实只有矩阵不一样,单独处理一下就好。

那么操作复杂度是\(O((5n) ^ 3 k log T)\)

注意要处理出\(G^1,G^2,G^4,.....G^23\)的结果。

[NOI2020] 美食家的更多相关文章

  1. [XIN算法应用]NOI2020美食家

    XIN(\(updated 2021.6.4\)) 对于很多很多的题目,发现自己并不会之后,往往会直接冲上一个XIN队算法,然而,这样 \(\huge{\text{鲁莽}}\) 的行为只能获得 TLE ...

  2. [NOI2020]美食家 题解

    题意分析 给出一个带权有向图,要求从节点 $1$ 出发,经过恰好 $T$ 的边权和,回到节点 $1$ ,求可经过的最大点权和.特别地,经过的边权和达到部分特殊数时,会有某个点的点权发生改变. 思路分析 ...

  3. P6772 [NOI2020]美食家

    题目大意 给你一个 \(n\) 个点,\(m\) 条边的有向图,每条边有一个权值 \(w_i\) ,每个节点有一个权值 \(a_i\) . 你从节点 \(1\) 出发,每经过一个节点就可以获得该点的权 ...

  4. 洛谷 P6772 - [NOI2020]美食家(广义矩阵快速幂)

    题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,第 \(0\) 天的时候你在 \(1\) 号城市,第 \(T\) 天的时候你要回到 \(1\) 号城市. 每条边上的边权表示从城 ...

  5. 【NOI2020】美食家(矩阵)

    Description 给定一张有向图,\(n\) 个顶点,\(m\) 条边.第 \(i\) 条边从 \(u_i\) 到 \(v_i\),走完该边的用时为 \(w_i\).每一个点有一个价值 \(c\ ...

  6. XIN队算法

    XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...

  7. BZOJ 1691: [Usaco2007 Dec]挑剔的美食家 [treap 贪心]

    1691: [Usaco2007 Dec]挑剔的美食家 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 786  Solved: 391[Submit][S ...

  8. [BZOJ1691][Usaco2007 Dec]挑剔的美食家

    [BZOJ1691][Usaco2007 Dec]挑剔的美食家 试题描述 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了. ...

  9. BZOJ 1691: [Usaco2007 Dec]挑剔的美食家( 平衡树 )

    按鲜嫩程度排个序, 从大到小处理, 用平衡树维护价值 ---------------------------------------------------------------------- #i ...

随机推荐

  1. Java:常用的容器小记

    Java:常用的容器小记 对 Java 中的 常用容器,做一个微不足道的小小小小记 容器类概述 常见容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 M ...

  2. 实用小技巧:Notepad++直接连接Linux

    实用小技巧:Notepad++直接连接Linux 前言 号称编辑器之神的Vim对于只会用几个基础操作的本人而言,在编辑一些大型文本有那么些力不从心: 平时都是通过Xftp拖到本地,修改完后再覆盖回去: ...

  3. 计算机网络之IPv4(IPv4分组、IPv4地址、NAT、子网划分与子网掩码、CIDR、ARP协议、DHCP、ICMP)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105138313 学习课程:<2019王道考研计算机网络> 学习目的 ...

  4. reactnative实现qq聊天消息气泡拖拽消失效果

    前言(可跳过) 我在开发自己的APP时遇到了一个类似于qq聊天消息气泡拖拽消息的需求,因为在网上没有找到相关的组件,所以自己动手实现了一下 需求:对聊天消息气泡拖拽到一定长度松开时该气泡会消失(可自行 ...

  5. sql 多表联合查询更新

    sqlserver: update A a set a.i = b.k from B b where a.key = b.key oracle : update A a set a.i = (sele ...

  6. 前端面试手写代码——call、apply、bind

    1 call.apply.bind 用法及对比 1.1 Function.prototype 三者都是Function原型上的方法,所有函数都能调用它们 Function.prototype.call ...

  7. Flink入门-第一篇:Flink基础概念以及竞品对比

    Flink入门-第一篇:Flink基础概念以及竞品对比 Flink介绍 截止2021年10月Flink最新的稳定版本已经发展到1.14.0 Flink起源于一个名为Stratosphere的研究项目主 ...

  8. java随手记 基础

    import java.util.Scanner; //Scanner is in this package 明确导入 import java.util.*; //通配符导入 两者性能上无区别 pub ...

  9. CSS px的理解

    px是像素.然而一个屏幕像素的多少是由屏幕的分辨率决定的. 取个极端的栗子:如果分辨率是1w*1w,你设置一个100px宽的输入框,你只占屏幕的1/100,但是如果屏幕的分辨率是100*100,那么你 ...

  10. 数组 & 对象 & 函数

    数组 数组也是一个对象,不同的是对象用字符串作为属性名,而数组用数字作为索引,数组的索引从0开始 创建数组: //方式一:构造器,可以在创建数组时指定 Var arr = new Array(1,2, ...