T1 lesson5!

开始以为是个无向图,直接不懂,跳去T2了。

之后有看了一眼发现可暴力,于是有了\(80pts\)。

发现这个图是有拓扑序的,于是可以用拓扑排序找最长路径。先找原图内在最长路径上的点,挨个删了跑拓扑排,看哪个最短。

正解太nb了待补。

\(code:\)

80pts

#include<bits/stdc++.h>
using namespace std; namespace IO{
inline int read(){
char ch=getchar(); int x=0,f=1;
while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
return x*f;
}
inline void write(int x,char sp){
char ch[20]; int len=0;
if(x<0){ putchar('-'); x=~x+1; }
do{ ch[len++]=(1<<4)+(1<<5)+x%10; x/=10; }while(x);
for(int i=len-1;~i;--i) putchar(ch[i]); putchar(sp);
}
inline int max(int x,int y){ return x<y?y:x; }
inline int min(int x,int y){ return x<y?x:y; }
inline void swap(int& x,int& y){ x^=y^=x^=y; }
inline void ckmax(int& x,int y){ x=x<y?y:x; }
inline void ckmin(int& x,int y){ x=x<y?x:y; }
} using namespace IO; const int NN=1e5+5,MM=5e5+5;
int t,n,m,mx,ans,pos,ban,idx,to[MM],nex[MM],head[NN],dis[NN],pre[NN];
int l,r,q[NN],in[NN],deg[NN];
bool vis[NN];
vector<int>vec;
inline void add(int a,int b){
to[++idx]=b; nex[idx]=head[a]; head[a]=idx; ++in[b];
} void topo(){
l=1; r=0;
for(int i=1;i<=n;i++)
if(!in[i]&&ban!=i) pre[i]=0, dis[i]=0, q[++r]=i;
while(l<=r){
int x=q[l++];
if(dis[x]>mx) mx=dis[x];
for(int i=head[x];i;i=nex[i]) if(in[to[i]]&&ban!=to[i]){
--in[to[i]];
if(!in[to[i]]){
pre[to[i]]=x;
dis[to[i]]=dis[x]+1;
q[++r]=to[i];
}
}
}
} signed main(){
FILE *R=freopen("johnny.in","r",stdin);
FILE *W=freopen("johnny.out","w",stdout);
t=read();
while(t--){
n=read(); m=read();
mx=ban=idx=0; vec.clear();
for(int i=1;i<=n;i++) in[i]=head[i]=vis[i]=0;
for(int a,b,i=1;i<=m;i++)
a=read(),b=read(), add(a,b);
for(int i=1;i<=n;i++) deg[i]=in[i];
topo(); ans=mx; pos=INT_MAX;
for(int i=1;i<=n;i++) if(dis[i]==mx){
int x=i;
while(x) vec.push_back(x), x=pre[x];
}
for(int i=0;i<vec.size();i++) if(!vis[vec[i]]){
ban=vec[i]; mx=0; vis[ban]=1;
for(int j=1;j<=n;j++) in[j]=deg[j];
for(int j=head[ban];j;j=nex[j]) --in[to[j]];
topo();
if(mx<ans||(mx==ans&&ban<pos)) ans=mx, pos=ban;
}
write(pos,' '); write(ans,'\n');
}
}


T2 贝尔数

模数不是质数就很搞。。

发现分解质因数后模数是五个一次的两位质数相乘,题目还给了模质数意义下的同余公式,于是可以先求出模五个质数意义下这一位贝尔数的值,然后再用中国剩余定理解个同余方程合并即可。

对每个质数可以先预处理前四十多个贝尔数,然后矩阵加速递推。

个人认为挺神的题(主要是数学跟矩阵都太菜了

\(code:\)

T2

#include<bits/stdc++.h>
#define int long long
using namespace std; namespace IO{
inline int read(){
char ch=getchar(); int x=0,f=1;
while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
return x*f;
}
inline void write(int x,char sp){
char ch[20]; int len=0;
if(x<0){ putchar('-'); x=~x+1; }
do{ ch[len++]=(1<<4)+(1<<5)+x%10; x/=10; }while(x);
for(int i=len-1;~i;--i) putchar(ch[i]); putchar(sp);
}
inline int max(int x,int y){ return x<y?y:x; }
inline int min(int x,int y){ return x<y?x:y; }
inline void swap(int& x,int& y){ x^=y^=x^=y; }
inline void ckmax(int& x,int y){ x=x<y?y:x; }
inline void ckmin(int& x,int y){ x=x<y?x:y; }
} using namespace IO; const int NN=1010,mod=95041567;
int T,n,nul,c[50][50],bell[50],pre[6],calc[6];
int pri[6]={0,31,37,41,43,47}; namespace Crt{
int exgcd(int a,int b,int& x,int& y){
if(!b){
x=1; y=0;
return a;
}
int g=exgcd(b,a%b,x,y),z;
z=y; y=x-a/b*y; x=z;
return g;
}
void init(){
bell[0]=1;
for(int i=0;i<50;i++) c[i][0]=1;
for(int i=1;i<50;i++) for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
for(int i=1;i<50;i++) for(int j=0;j< i;j++)
(bell[i]+=c[i-1][j]*bell[j]%mod)%=mod;
for(int i=1;i<6;i++){
int g=exgcd(pri[i],mod/pri[i],nul,pre[i]);
pre[i]=(pre[i]%mod+mod)%mod; pre[i]=(mod/pri[i])*pre[i]%mod;
}
}
int solve(){
int res=0;
for(int i=1;i<6;i++) (res+=pre[i]*calc[i])%=mod;
return res;
}
} using namespace Crt; namespace Matrix{
struct matrix{
int s[50][50];
void clr(){ memset(s,0,sizeof(s)); }
void pre(){ clr(); for(int i=0;i<50;i++) s[i][i]=1; }
void print(){for(int i=0;i<50;++i)for(int j=0;j<50;++j)write(s[i][j],j==49?'\n':' ');}
}mat[6],base[6];
matrix mul(matrix x,matrix y,int z){
matrix res; res.clr();
for(int i=0;i<50;i++)
for(int k=0;k<50;k++)
for(int j=0;j<50;j++)
(res.s[i][j]+=x.s[i][k]*y.s[k][j]%z)%=z;
return res;
}
void qpow(matrix& a,matrix b,int c,int d){
while(c){
if(c&1) a=mul(a,b,d);
b=mul(b,b,d);
c>>=1;
}
}
void prework(){
for(int i=1;i<6;i++){
for(int j=0;j<pri[i];j++) mat[i].s[1][j]=bell[j]%pri[i];
base[i].pre();
base[i].s[1][0]=base[i].s[0][pri[i]-1]=base[i].s[1][pri[i]-1]=1;
for(int j=1;j<pri[i]-1;j++) base[i].s[j+1][j]=1;
}
}
} using namespace Matrix; signed main(){
FILE *R=freopen("bell.in","r",stdin);
FILE *W=freopen("bell.out","w",stdout);
T=read(); init();
while(T--){
n=read(); prework();
for(int i=1;i<6;i++){
qpow(mat[i],base[i],n/pri[i],pri[i]);
calc[i]=mat[i].s[1][n%pri[i]];
}
write(solve(),'\n');
}
return 0;
}


T3 穿越广场

考完后发现这好像是个AC自动机套路题,但奈何时间久远,学的时候写的太快没多思考总结,于是SB了。

设\(f_{i,j,k,l}\)为\(DP\)到第\(i\)位,填了\(j\)个\(R\),在自动机中走到第\(k\)个节点,结束状态为\(l\)的方案数。

\(l\)为二进制状态,有两位。

于是有

\(\huge{f_{i,j,k,l} \to f_{i+1,j,to[k]['D'],l|end[to[k]['D']]}}\)

\(\huge{f_{i,j,k,l} \to f_{i+1,j+1,to[k]['R'],l|end[to[k]['R']]}}\)

初始状态\(f_{0,0,1,0}=1\)。

注意每个点继承它\(fail\)的状态即可。

\(code:\)

T3

#include<bits/stdc++.h>
#define int long long
#define ULL unsigned long long
using namespace std; namespace IO{
inline int read(){
char ch=getchar(); int x=0,f=1;
while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
return x*f;
}
inline void write(int x,char sp){
char ch[20]; int len=0;
if(x<0){ putchar('-'); x=~x+1; }
do{ ch[len++]=(1<<4)+(1<<5)+x%10; x/=10; }while(x);
for(int i=len-1;~i;--i) putchar(ch[i]); putchar(sp);
}
inline int max(int x,int y){ return x<y?y:x; }
inline int min(int x,int y){ return x<y?x:y; }
inline void swap(int& x,int& y){ x^=y^=x^=y; }
inline void ckmax(int& x,int y){ x=x<y?y:x; }
inline void ckmin(int& x,int y){ x=x<y?x:y; }
} using namespace IO; const int NN=110,p=1e9+7;
int t,n,m,ext,ans,f[NN<<1][NN][NN<<1][4];
char ch[NN]; namespace AC_automaton{
int root,tot,to[NN<<1][2],fail[NN<<1],end[NN<<1];
void insert(char *s){
int len=strlen(s),u=1;
for(int i=0;i<len;i++){
int now=(s[i]=='R');
if(!to[u][now]) to[u][now]=++tot, end[tot]=0;
u=to[u][now];
}
end[u]=root?2:1;
if(!root) root=1;
}
void build(){
queue<int>q;
if(to[root][0]) q.push(to[root][0]), fail[to[root][0]]=root;
else to[root][0]=root;
if(to[root][1]) q.push(to[root][1]), fail[to[root][1]]=root;
else to[root][1]=root;
while(!q.empty()){
int u=q.front(); q.pop();
end[u]|=end[fail[u]];
if(to[u][0]) fail[to[u][0]]=to[fail[u]][0], q.push(to[u][0]);
else to[u][0]=to[fail[u]][0];
if(to[u][1]) fail[to[u][1]]=to[fail[u]][1], q.push(to[u][1]);
else to[u][1]=to[fail[u]][1];
}
}
} using namespace AC_automaton; signed main(){
FILE *R=freopen("square.in","r",stdin);
FILE *W=freopen("square.out","w",stdout);
t=read();
while(t--){
m=read(); n=read(); tot=1; root=0; ext=n+m; ans=0;
memset(f,0,sizeof(f));
memset(to,0,sizeof(to));
memset(fail,0,sizeof(fail));
scanf("%s",ch); insert(ch);
scanf("%s",ch); insert(ch);
build(); f[0][0][1][0]=1;
for(int i=0;i<ext;i++)
for(int j=0;j<=m;j++){
if(j>i||i-j>n) continue;
for(int k=1;k<=tot;k++)
for(int u=0;u<4;u++){
(f[i+1][j ][to[k][0]][u|end[to[k][0]]]+=f[i][j][k][u])%=p;
(f[i+1][j+1][to[k][1]][u|end[to[k][1]]]+=f[i][j][k][u])%=p;
}
}
for(int i=1;i<=tot;i++) (ans+=f[ext][m][i][3])%=p;
write(ans,'\n');
}
return 0;
}


T4 舞动的夜晚

先跑最大流,然后在残量网络上跑\(tarjan\),如果边在\(SCC\)里说明它没有影响。

改的有点ex,待补

2021.9.21考试总结[NOIP模拟58]的更多相关文章

  1. 2021.8.21考试总结[NOIP模拟45]

    T1 打表 由归纳法可以发现其实就是所有情况的总和. $\frac{\sum_{j=1}^{1<<k}(v_j-v_{ans})}{2^k}$ $code:$ 1 #include< ...

  2. 2021.7.21考试总结[NOIP模拟22]

    终于碾压小熠了乐死了 T1 d 小贪心一波直接出正解,没啥好说的(bushi 好像可以主席树暴力找,但我怎么可能会呢?好像可以堆优化简单找,但我怎么可能想得到呢? 那怎么办?昨天两道单调指针加桶,我直 ...

  3. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  4. 2021.9.13考试总结[NOIP模拟52]

    T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bit ...

  5. 2021.8.11考试总结[NOIP模拟36]

    T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 ...

  6. 2021.7.29考试总结[NOIP模拟27]

    T1 牛半仙的妹子图 做法挺多的,可以最小生成树或者最短路,复杂度O(cq),c是颜色数. 我考场上想到了原来做过的一道题影子,就用了并查集,把边权排序后一个个插入,记录权值的前缀和,复杂度mlogm ...

  7. 2021.7.15考试总结[NOIP模拟16]

    ZJ模拟D2就是NB.. T1 Star Way To Heaven 谁能想到这竟是个最小生成树呢?(T1挂分100的高人JYF就在我身边 把上边界和下边界看成一个点和星星跑最小生成树,从上边界开始跑 ...

  8. 2021.9.14考试总结[NOIP模拟53]

    T1 ZYB和售货机 容易发现把每个物品都买成$1$是没有影响的. 然后考虑最后一个物品的方案,如果从$f_i$向$i$连边,发现每个点有一个出度多个入度,可以先默认每个物品都能买且最大获利,这样可以 ...

  9. 2021.9.12考试总结[NOIP模拟51]

    T1 茅山道术 仔细观察发现对于每个点只考虑它前面第一个与它颜色相同的点即可. 又仔细观察发现对一段区间染色后以这个区间内点为端点的区间不能染色. 于是对区间右端点而言,区间染色的贡献为遍历到区间左端 ...

随机推荐

  1. JS006. 详解自执行函数原理与数据类型的快速转换 (声明语句、表达式、运算符剖析)

    今天的主角: Operator Description 一元正值符 " + "(MDN) 一元运算符, 如果操作数在之前不是number,试图将其转换为number. 圆括号运算符 ...

  2. redis存取数据String

    一.连接不同数据库和存取String类型值 1.连接数据库 2.set和get多个 3.取值并赋值 取值返回的是赋值改变之前的值: 4.递增和递减 5.字符串尾部加值 6.商品编号自增应用

  3. CPF 入门教程 - 各平台各系统发布说明(九)

    CPF C#跨平台桌面UI框架,支持Windows,Mac,Linux,支持龙芯.飞腾等CPU 系列教程 CPF 入门教程(一) CPF 入门教程 - 数据绑定和命令绑定(二) CPF 入门教程 - ...

  4. angularjs $http.get 和 $http.post 传递参数

    $http.get请求数据的格式 $http.get(URL,{ params: { "id":id } }) .success(function(response, status ...

  5. 安装Centos7,出现无法联网的问题-----解决办法

    安装Centos7,出现无法联网的问题-----解决办法 我安装的是centos7的版本 在我照着centos7安装教程-CentOS-PHP中文网这个教程安装完后 我发现我的centOS无法联网,在 ...

  6. final关键字在PHP中的使用

    final关键字的使用非常简单,在PHP中的最主要作用是定义不可重写的方法.什么叫不可重写的方法呢?就是子类继承后也不能重新再定义这个同名的方法. class A { final function t ...

  7. supermvc介绍

    马上要开始写毕设了,需要一个合适的框架.想想自己用过的几个框框speedphp tp啊 还有公司的 dagger啊 ,大同小易.每一种都有自己喜欢的地方.然后想到了二八理论,我们常用的功能可能不到框架 ...

  8. U2-关系数据库

    2.1 关系数据结构及形式化定义 关系数据库系统是支持关系模型的数据库系统.(关系模型由关系数据结构.关系操作集合和关系完整性约束三部分组成) 2.1.1 关系 1-域 域是一组具有相同数据类型的值的 ...

  9. Python - 生成requirement.text 文件

    前言 该篇操作笔记摘自小菠萝 Python项目中,一般都会有一个 requirements.txt 文件 这个文件主要是用于记录当前项目下的所有依赖包及其精确的版本号,以方便在一个新环境下更快的进行部 ...

  10. YbtOJ#903-染色方案【拉格朗日插值,NTT,分治】

    正题 题目链接:https://www.ybtoj.com.cn/contest/115/problem/3 题目大意 两个长度为\(n+1\)的序列\(a,b\) \(a_i\)表示涂了\(i\)个 ...