吴恩达课后习题第二课第三周:TensorFlow Introduction
第二课第三周:TensorFlow Introduction
Introduction to TensorFlow
TensorFlow 2.3 has made significant improvements over its predecessor, some of which you'll encounter and implement here!
By the end of this assignment, you'll be able to do the following in TensorFlow 2.3:
- Use
tf.Variable
to modify the state of a variable- Explain the difference between a variable and a constant
- Train a Neural Network on a TensorFlow dataset
Programming frameworks like TensorFlow not only cut down on time spent coding, but can also perform optimizations that speed up the code itself
1 - Packages
import h5py
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.python.framework.ops import EagerTensor
from tensorflow.python.ops.resource_variable_ops import ResourceVariable
import time
1.1 - Checking TensorFlow Version
You will be using v2.3 for this assignment, for maximum speed and efficiency.
tf.__version__
2 - Basic Optimization with GradientTape
The beauty of TensorFlow 2 is in its simplicity. Basically, all you need to do is implement forward propagation through a computational graph. TensorFlow will compute the derivatives for you, by moving backwards through the graph recorded with
GradientTape
. All that's left for you to do then is specify the cost function and optimizer you want to use!
When writing a TensorFlow program, the main object to get used and transformed is thetf.Tensor
. These tensors are the TensorFlow equivalent of Numpy arrays, i.e. multidimensional arrays of a given data type that also contain information about the computational graph.
Below, you'll usetf.Variable
to store the state of your variables. Variables can only be created once as its initial value defines the variable shape and type. Additionally, thedtype
arg intf.Variable
can be set to allow data to be converted to that type. But if none is specified, either the datatype will be kept if the initial value is a Tensor, orconvert_to_tensor
will decide. It's generally best for you to specify directly, so nothing breaks!
Here you'll call the TensorFlow dataset created on a HDF5 file, which you can use in place of a Numpy array to store your datasets. You can think of this as a TensorFlow data generator!
You will use the Hand sign data set, that is composed of images with shape 64x64x3.
train_dataset = h5py.File('datasets/train_signs.h5', "r")
test_dataset = h5py.File('datasets/test_signs.h5', "r")
x_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_x'])
y_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_y'])
x_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_x'])
y_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_y'])
type(x_train)
Since TensorFlow Datasets are generators, you can't access directly the contents unless you iterate over them in a for loop, or by explicitly creating a Python iterator using
iter
and consuming its elements usingnext
. Also, you can inspect theshape
anddtype
of each element using theelement_spec
attribute.
The dataset that you'll be using during this assignment is a subset of the sign language digits. It contains six different classes representing the digits from 0 to 5.
unique_labels = set()
for element in y_train:
unique_labels.add(element.numpy())
print(unique_labels)
You can see some of the images in the dataset by running the following cell.
images_iter = iter(x_train)
labels_iter = iter(y_train)
plt.figure(figsize=(10, 10))
for i in range(25):
ax = plt.subplot(5, 5, i + 1)
plt.imshow(next(images_iter).numpy().astype("uint8"))
plt.title(next(labels_iter).numpy().astype("uint8"))
plt.axis("off")
There's one more additional difference between TensorFlow datasets and Numpy arrays: If you need to transform one, you would invoke the map method to apply the function passed as an argument to each of the elements.
def normalize(image):
"""
Transform an image into a tensor of shape (64 * 64 * 3, )
and normalize its components.
Arguments
image - Tensor.
Returns:
result -- Transformed tensor
"""
image = tf.cast(image, tf.float32) / 255.0
image = tf.reshape(image, [-1,])
return image
new_train = x_train.map(normalize)
new_test = x_test.map(normalize)
new_train.element_spec
2.1 - Linear Function
Let's begin this programming exercise by computing the following equation: Y = WX + b, where W and X are random matrices and b is a random vector.
Exercise 1 - linear_function
Compute WX + b where W, X, and b are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, this is how to define a constant X with the shape (3,1):
X = tf.constant(np.random.randn(3,1), name = "X")
Note that the difference between
tf.constant
andtf.Variable
is that you can modify the state of atf.Variable
but cannot change the state of atf.constant
.
You might find the following functions helpful:
- tf.matmul(..., ...) to do a matrix multiplication
- tf.add(..., ...) to do an addition
- np.random.randn(...) to initialize randomly
# GRADED FUNCTION: linear_function
def linear_function():
"""
Implements a linear function:
Initializes X to be a random tensor of shape (3,1)
Initializes W to be a random tensor of shape (4,3)
Initializes b to be a random tensor of shape (4,1)
Returns:
result -- Y = WX + b
"""
np.random.seed(1)
"""
Note, to ensure that the "random" numbers generated match the expected results,
please create the variables in the order given in the starting code below.
(Do not re-arrange the order).
"""
# (approx. 4 lines)
# X = ...
# W = ...
# b = ...
# Y = ...
# YOUR CODE STARTS HERE
X =tf.constant(np.random.randn(3,1), name = "X")
W =tf.constant(np.random.randn(4,3), name = "W")
b =tf.constant(np.random.randn(4,1),name="b")
Y =tf.add(tf.matmul(W,X),b)#矩阵乘法
# YOUR CODE ENDS HERE
return Y
result = linear_function()
print(result)
assert type(result) == EagerTensor, "Use the TensorFlow API"
assert np.allclose(result, [[-2.15657382], [ 2.95891446], [-1.08926781], [-0.84538042]]), "Error"
print("\033[92mAll test passed")
2.2 - Computing the Sigmoid
Amazing! You just implemented a linear function. TensorFlow offers a variety of commonly used neural network functions like
tf.sigmoid
andtf.softmax
.
For this exercise, compute the sigmoid of z.
In this exercise, you will: Cast your tensor to type
float32
usingtf.cast
, then compute the sigmoid usingtf.keras.activations.sigmoid
.
Exercise 2 - sigmoid
Implement the sigmoid function below. You should use the following:
tf.cast("...", tf.float32)
tf.keras.activations.sigmoid("...")
# GRADED FUNCTION: sigmoid
def sigmoid(z):
"""
Computes the sigmoid of z
Arguments:
z -- input value, scalar or vector
Returns:
a -- (tf.float32) the sigmoid of z
"""
# tf.keras.activations.sigmoid requires float16, float32, float64, complex64, or complex128.
# (approx. 2 lines)
# z = ...
# a = ...
# YOUR CODE STARTS HERE
z = tf.cast(z, tf.float32)#将 z变为floa32型
a =tf.keras.activations.sigmoid(z)#激活函数sigmoid
# YOUR CODE ENDS HERE
return a
。
result = sigmoid(-1)
print ("type: " + str(type(result)))
print ("dtype: " + str(result.dtype))
print ("sigmoid(-1) = " + str(result))
print ("sigmoid(0) = " + str(sigmoid(0.0)))
print ("sigmoid(12) = " + str(sigmoid(12)))
def sigmoid_test(target):
result = target(0)
assert(type(result) == EagerTensor)
assert (result.dtype == tf.float32)
assert sigmoid(0) == 0.5, "Error"
assert sigmoid(-1) == 0.26894143, "Error"
assert sigmoid(12) == 0.9999939, "Error"
print("\033[92mAll test passed")
sigmoid_test(sigmoid)
2.3 - Using One Hot Encodings
Many times in deep learning you will have a Y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert like this:
This is called "one hot" encoding, because in the converted representation, exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In TensorFlow, you can use one line of code:
- tf.one_hot(labels, depth, axis=0)
axis=0
indicates the new axis is created at dimension 0
Exercise 3 - one_hot_matrix
Implement the function below to take one label and the total number of classes C, and return the one hot encoding in a column wise matrix. Use
tf.one_hot()
to do this, andtf.reshape()
to reshape your one hot tensor!
tf.reshape(tensor, shape)
# GRADED FUNCTION: one_hot_matrix
def one_hot_matrix(label, depth=6):
"""
Computes the one hot encoding for a single label
Arguments:
label -- (int) Categorical labels
depth -- (int) Number of different classes that label can take
Returns:
one_hot -- tf.Tensor A single-column matrix with the one hot encoding.
"""
# (approx. 1 line)
# one_hot = ...
# YOUR CODE STARTS HERE
#one_hot =tf.one_hot(label,depth,axis=0)
#将lable变为热键,由上图可见,2即为该列第2位为1(0开始),axis=0即上下维度(竖向)
one_hot=tf.reshape(tensor=tf.one_hot(label,depth,axis=0), shape=[-1])#[-1]表示这一维度不定义大小,而是根据数据情况进行匹配。
print(one_hot)
# YOUR CODE ENDS HERE
return one_hot
def one_hot_matrix_test(target):
label = tf.constant(1)
depth = 4
result = target(label, depth)
print("Test 1:",result)
assert result.shape[0] == depth, "Use the parameter depth"
assert np.allclose(result, [0., 1. ,0., 0.] ), "Wrong output. Use tf.one_hot"
label_2 = [2]
result = target(label_2, depth)
print("Test 2:", result)
assert result.shape[0] == depth, "Use the parameter depth"
assert np.allclose(result, [0., 0. ,1., 0.] ), "Wrong output. Use tf.reshape as instructed"
print("\033[92mAll test passed")
one_hot_matrix_test(one_hot_matrix)
new_y_test = y_test.map(one_hot_matrix)
new_y_train = y_train.map(one_hot_matrix)
2.4 - Initialize the Parameters
Now you'll initialize a vector of numbers with the Glorot initializer. The function you'll be calling is
tf.keras.initializers.GlorotNormal
, which draws samples from a truncated normal distribution centered on 0, withstddev = sqrt(2 / (fan_in + fan_out))
, wherefan_in
is the number of input units andfan_out
is the number of output units, both in the weight tensor.
To initialize with zeros or ones you could use
tf.zeros()
ortf.ones()
instead.
Exercise 4 - initialize_parameters
Implement the function below to take in a shape and to return an array of numbers using the GlorotNormal initializer.
tf.keras.initializers.GlorotNormal(seed=1)
tf.Variable(initializer(shape=())
# GRADED FUNCTION: initialize_parameters
def initialize_parameters():
"""
Initializes parameters to build a neural network with TensorFlow. The shapes are:
W1 : [25, 12288]
b1 : [25, 1]
W2 : [12, 25]
b2 : [12, 1]
W3 : [6, 12]
b3 : [6, 1]
Returns:
parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
"""
initializer = tf.keras.initializers.GlorotNormal(seed=1)
#(approx. 6 lines of code)
# W1 = ...
# b1 = ...
# W2 = ...
# b2 = ...
# W3 = ...
# b3 = ...
# YOUR CODE STARTS HERE
W1 =tf.Variable(initializer(shape=(25,12288)),name="W1")
b1 =tf.Variable(initializer(shape=(25,1)),name="b1")
W2 =tf.Variable(initializer(shape=(12,25)),name="W2")
b2 =tf.Variable(initializer(shape=(12,1)),name="b2")
W3 =tf.Variable(initializer(shape=(6,12)),name="W3")
b3 =tf.Variable(initializer(shape=(6,1)),name="b3")
# YOUR CODE ENDS HERE
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
def initialize_parameters_test(target):
parameters = target()
values = {"W1": (25, 12288),
"b1": (25, 1),
"W2": (12, 25),
"b2": (12, 1),
"W3": (6, 12),
"b3": (6, 1)}
for key in parameters:
print(f"{key} shape: {tuple(parameters[key].shape)}")
assert type(parameters[key]) == ResourceVariable, "All parameter must be created using tf.Variable"
assert tuple(parameters[key].shape) == values[key], f"{key}: wrong shape"
assert np.abs(np.mean(parameters[key].numpy())) < 0.5, f"{key}: Use the GlorotNormal initializer"
assert np.std(parameters[key].numpy()) > 0 and np.std(parameters[key].numpy()) < 1, f"{key}: Use the GlorotNormal initializer"
print("\033[92mAll test passed")
initialize_parameters_test(initialize_parameters)
parameters = initialize_parameters()
3 - Building Your First Neural Network in TensorFlow
In this part of the assignment you will build a neural network using TensorFlow. Remember that there are two parts to implementing a TensorFlow model:
- Implement forward propagation
- Retrieve the gradients and train the model
Let's get into it!
3.1 - Implement Forward Propagation
One of TensorFlow's great strengths lies in the fact that you only need to implement the forward propagation function and it will keep track of the operations you did to calculate the back propagation automatically.
Exercise 5 - forward_propagation
Implement the forward_propagation
function.
Note Use only the TF API.
- tf.math.add
- tf.linalg.matmul
- tf.keras.activations.relu
# GRADED FUNCTION: forward_propagation
def forward_propagation(X, parameters):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
the shapes are given in initialize_parameters
Returns:
Z3 -- the output of the last LINEAR unit
"""
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
#(approx. 5 lines) # Numpy Equivalents:
# Z1 = ... # Z1 = np.dot(W1, X) + b1
# A1 = ... # A1 = relu(Z1)
# Z2 = ... # Z2 = np.dot(W2, A1) + b2
# A2 = ... # A2 = relu(Z2)
# Z3 = ... # Z3 = np.dot(W3, A2) + b3
# YOUR CODE STARTS HERE
Z1 = tf.math.add(tf.linalg.matmul(W1, X) ,b1)
A1 = tf.keras.activations.relu(Z1)
Z2 = tf.math.add(tf.linalg.matmul(W2, A1) ,b2)
A2 = tf.keras.activations.relu(Z2)
Z3 = tf.math.add(tf.linalg.matmul(W3, A2) ,b3)
# YOUR CODE ENDS HERE
return Z3
def forward_propagation_test(target, examples):
minibatches = examples.batch(2)
for minibatch in minibatches:
forward_pass = target(tf.transpose(minibatch), parameters)
print(forward_pass)
assert type(forward_pass) == EagerTensor, "Your output is not a tensor"
assert forward_pass.shape == (6, 2), "Last layer must use W3 and b3"
assert np.allclose(forward_pass,
[[-0.13430887, 0.14086473],
[ 0.21588647, -0.02582335],
[ 0.7059658, 0.6484556 ],
[-1.1260961, -0.9329492 ],
[-0.20181894, -0.3382722 ],
[ 0.9558965, 0.94167566]]), "Output does not match"
break
print("\033[92mAll test passed")
forward_propagation_test(forward_propagation, new_train)
3.2 Compute the Cost
All you have to do now is define the loss function that you're going to use. For this case, since we have a classification problem with 6 labels, a categorical cross entropy will work!
Exercise 6 - compute_cost
Implement the cost function below.
- It's important to note that the "
y_pred
" and "y_true
" inputs of tf.keras.losses.categorical_crossentropy are expected to be of shape (number of examples, num_classes).
tf.reduce_mean
basically does the summation over the examples.
# GRADED FUNCTION: compute_cost
def compute_cost(logits, labels):
"""
Computes the cost
Arguments:
logits -- output of forward propagation (output of the last LINEAR unit), of shape (6, num_examples)
labels -- "true" labels vector, same shape as Z3
Returns:
cost - Tensor of the cost function
"""
#(1 line of code)
# cost = ...
# YOUR CODE STARTS HERE
cost =tf.reduce_mean(tf.keras.losses.categorical_crossentropy(labels, logits,from_logits=False))
#本部分结果并不正确
#cost =tf.keras.losses.categorical_crossentropy(labels,logits)
# YOUR CODE ENDS HERE
return cost
本部分答案并不准确,仅供参考
def compute_cost_test(target, Y):
pred = tf.constant([[ 2.4048107, 5.0334096 ],
[-0.7921977, -4.1523376 ],
[ 0.9447198, -0.46802214],
[ 1.158121, 3.9810789 ],
[ 4.768706, 2.3220146 ],
[ 6.1481323, 3.909829 ]])
minibatches = Y.batch(2)
for minibatch in minibatches:
result = target(pred, tf.transpose(minibatch))
break
print(result)
assert(type(result) == EagerTensor), "Use the TensorFlow API"
assert (np.abs(result - (0.25361037 + 0.5566767) / 2.0) < 1e-7), "Test does not match. Did you get the mean of your cost functions?"
print("\033[92mAll test passed")
compute_cost_test(compute_cost, new_y_train )
3.3 - Train the Model
Let's talk optimizers. You'll specify the type of optimizer in one line, in this case
tf.keras.optimizers.Adam
(though you can use others such as SGD), and then call it within the training loop.
Notice the
tape.gradient
function: this allows you to retrieve the operations recorded for automatic differentiation inside theGradientTape
block. Then, calling the optimizer methodapply_gradients
, will apply the optimizer's update rules to each trainable parameter. At the end of this assignment, you'll find some documentation that explains this more in detail, but for now, a simple explanation will do.
Here you should take note of an important extra step that's been added to the batch training process:
tf.Data.dataset = dataset.prefetch(8)
What this does is prevent a memory bottleneck that can occur when reading from disk.
prefetch()
sets aside some data and keeps it ready for when it's needed. It does this by creating a source dataset from your input data, applying a transformation to preprocess the data, then iterating over the dataset the specified number of elements at a time. This works because the iteration is streaming, so the data doesn't need to fit into the memory.
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
Arguments:
X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
X_test -- training set, of shape (input size = 12288, number of training examples = 120)
Y_test -- test set, of shape (output size = 6, number of test examples = 120)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 10 epochs
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
costs = [] # To keep track of the cost
train_acc = []
test_acc = []
# Initialize your parameters
#(1 line)
parameters = initialize_parameters()
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
optimizer = tf.keras.optimizers.Adam(learning_rate)
# The CategoricalAccuracy will track the accuracy for this multiclass problem
test_accuracy = tf.keras.metrics.CategoricalAccuracy()
train_accuracy = tf.keras.metrics.CategoricalAccuracy()
dataset = tf.data.Dataset.zip((X_train, Y_train))
test_dataset = tf.data.Dataset.zip((X_test, Y_test))
# We can get the number of elements of a dataset using the cardinality method
m = dataset.cardinality().numpy()
minibatches = dataset.batch(minibatch_size).prefetch(8)
test_minibatches = test_dataset.batch(minibatch_size).prefetch(8)
#X_train = X_train.batch(minibatch_size, drop_remainder=True).prefetch(8)# <<< extra step
#Y_train = Y_train.batch(minibatch_size, drop_remainder=True).prefetch(8) # loads memory faster
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0.
#We need to reset object to start measuring from 0 the accuracy each epoch
train_accuracy.reset_states()
for (minibatch_X, minibatch_Y) in minibatches:
with tf.GradientTape() as tape:
# 1. predict
Z3 = forward_propagation(tf.transpose(minibatch_X), parameters)
# 2. loss
minibatch_cost = compute_cost(Z3, tf.transpose(minibatch_Y))
# We acumulate the accuracy of all the batches
train_accuracy.update_state(tf.transpose(Z3), minibatch_Y)
trainable_variables = [W1, b1, W2, b2, W3, b3]
grads = tape.gradient(minibatch_cost, trainable_variables)
optimizer.apply_gradients(zip(grads, trainable_variables))
epoch_cost += minibatch_cost
# We divide the epoch cost over the number of samples
epoch_cost /= m
# Print the cost every 10 epochs
if print_cost == True and epoch % 10 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
print("Train accuracy:", train_accuracy.result())
# We evaluate the test set every 10 epochs to avoid computational overhead
for (minibatch_X, minibatch_Y) in test_minibatches:
Z3 = forward_propagation(tf.transpose(minibatch_X), parameters)
test_accuracy.update_state(tf.transpose(Z3), minibatch_Y)
print("Test_accuracy:", test_accuracy.result())
costs.append(epoch_cost)
train_acc.append(train_accuracy.result())
test_acc.append(test_accuracy.result())
test_accuracy.reset_states()
return parameters, costs, train_acc, test_acc
parameters, costs, train_acc, test_acc = model(new_train, new_y_train, new_test, new_y_test, num_epochs=100)
Numbers you get can be different, just check that your loss is going down and your accuracy going up!
# Plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
plt.show()
# Plot the train accuracy
plt.plot(np.squeeze(train_acc))
plt.ylabel('Train Accuracy')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
# Plot the test accuracy
plt.plot(np.squeeze(test_acc))
plt.ylabel('Test Accuracy')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(0.0001))
plt.show()
Congratulations! You've made it to the end of this assignment, and to the end of this week's material. Amazing work building a neural network in TensorFlow 2.3!
Here's a quick recap of all you just achieved:
- Used
tf.Variable
to modify your variables- Trained a Neural Network on a TensorFlow dataset
You are now able to harness the power of TensorFlow to create cool things, faster. Nice!
4 - Bibliography
In this assignment, you were introducted to tf.GradientTape
, which records operations for differentation. Here are a couple of resources for diving deeper into what it does and why:
Introduction to Gradients and Automatic Differentiation:
https://www.tensorflow.org/guide/autodiff
GradientTape documentation:
https://www.tensorflow.org/api_docs/python/tf/GradientTape
吴恩达课后习题第二课第三周:TensorFlow Introduction的更多相关文章
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验【中英】
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + ...
- 吴恩达课后作业学习2-week1-1 初始化
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 ...
- 吴恩达课后作业学习2-week1-2正则化
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 ...
- 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课 ...
- 吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
- 【中文】【deplearning.ai】【吴恩达课后作业目录】
[目录][吴恩达课后作业目录] 吴恩达深度学习相关资源下载地址(蓝奏云) 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程 ...
- 【吴恩达课后编程作业】第二周作业 - Logistic回归-识别猫的图片
1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件 ...
随机推荐
- Django使用富文本编辑器ckediter
1 - 安装 pip install django-ckeditor 2 - 注册APP ckeditor 3 - 由于djang-ckeditor在ckeditor-init.js文件中使用了JQu ...
- [源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎
[源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎 目录 [源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎 0x00 摘要 0x01 前言 1.1 ...
- adb 常用命令大全(1)- 汇总
adb 常用命令大全系列 基础命令 查看手机设备信息 应用管理 日志相关 模拟按键输入 其他实用功能
- ES6:使用解构赋值仅用一行定义多个相同的数组,且指向堆不同(解构赋值)
在开发过程中我们经常要用到一些临时变量对数据进行一些特殊处理,由于良好的编码习惯要在临时变量用完后释放内存,所以当临时变量数量较多时,整体代码会变得冗余. let a = [] let b = [] ...
- JS003. 事件监听和监听滚动条的三种参数( addEventListener( ) )
全局 1 window.addEventListener('scroll', () => { 2 console.log('------') 3 console.log(document.doc ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
- UI自动化测试:App的Webview页面元素左滑
一.前言 在做App自动化测试时,我们会遇到如上图所示的列表数据页面左滑删除场景,一般可以通过location.rect方法获取对应列表的元素坐标,然后使用TouchAction或者swipe滑动 ...
- PHP中使用PDO操作事务的一些小测试
关于事务的问题,我们就不多解释了,以后在学习 MySQL 的相关内容时再深入的了解.今天我们主要是对 PDO 中操作事务的一些小测试,或许能发现一些比较好玩的内容. 在 MyISAM 上使用事务会怎么 ...
- 【TP3.2.3】addAll方法的坑
问题:做一个导入Excel到数据库的功能中需要用到addAll功能,但是每次执行到addAll()时都会报错,如下 Insert value list does not match column li ...
- Jmeter系列(14)- Setup与tearDown线程组
与普通线程组区别 #Setup线程组:在普通线程组执⾏前触发 #tearDown线程组:在普通线程组执⾏后触发 线程组属性配置详情完全⼀致 使⽤策略建议 #Setup 线程组 – 压测执⾏准备阶段,准 ...