[atARC112E]Rvom and Rsrev
毒瘤分类讨论题
(注:以下情况都有“之前的情况都不满足的”前提条件,并用斜体表示一些说明)
Case0:若$|s|\le 2$,直接输出即可,因此假设$|s|>3$
首先,我们最希望在不对$b$操作的前提下(不减小$b$的数量)使得所有$b$都在最前面,此时即最大化后缀$a$的数量,由于每一次操作减少两个$a$,即最小化操作数
Case1:以$a$为结尾(不难证明此时总是可以达到我们最希望的情况)
Case1.1:以$aa$为结尾,将$a$通过$b$划分为若干个非空段,根据长度分为两类:
1.对于非结尾且长度大于1的段,将该段第一个$a$与结尾段的第一个$a$操作,每一段多1次操作
2.对于(非结尾且)长度为1的段,与同类的段相互抵消,需要段数除以2上取整次操作
Case1.2:以$ba$为结尾,同样将其划分后,再分类讨论
Case1.2.1:若不存在长度大于2的段,则永远无法使得最终结尾$a$的个数大于1,因此最终个数取决于初始$a$个数的奇偶性(即0或1)
Case1.2.2:无特殊限制(存在长度大于2的段),将该段第一个$a$与结尾的$a$操作后,即与Case1.1相同
事实上,由于恰好不考虑最后一段$a$以及每一段$a$都要一次操作,所以与Case1.1完全相同
Case2:$a$的个数为偶数,此时直接成对来删除所有$a$即可
如果不满足Case1和Case2,那么是达不到最希望的情况的,此时根据是否对$b$操作来分类
对$b$操作的基本思路是将末尾的$b$与一个$a$之前的$b$操作使得以$a$为结尾,那么至少要损失两个$b$,同时能够做到让剩下的$b$都在最前面
Case3:整个字符串中不存在形如$ba$的形式,或以$abb$、$ab$结尾
此时选择不对$b$操作,显然保留最后的$a$,将其余$a$成对消除即可
Case4:无特殊条件(不满足Case1、Case2和Case3)
Case4.1:不以$a$为开头
注意到与长度大于1的段之前的$b$操作一定会使得答案减小2,而与长度为1的段之前的$b$操作至多使答案减小2,因此显然与长度大于1的段之前的$b$操作
Case4.1.1:不存在长度大于1的段,那么与Case1.2.1相同,最终结尾的$a$个数即初始$a$个数奇偶性
Case4.1.2:存在长度大于1的段,将末尾的$b$与该段开头的$b$操作后与Case1.1相同
Case4.2:以$a$为开头
Case4.2.1:以$ab$为开头或存在不在开头且长度大于1的段,此时与Case4.1同样操作即可
Case4.2.2:无特殊限制(以$aa$为开头且不存在不在开头且长度大于1的段),此时先将末尾的$b$与任意一个$a$之前的$b$(长度都是1)操作,之后与Case1.2相同
先将开头的$a$与某一个$a$操作是等价的,此时对应于Case4.1
1 #include<bits/stdc++.h>
2 using namespace std;
3 int t;
4 char s[200005];
5 int main(){
6 scanf("%d",&t);
7 while (t--){
8 scanf("%s",s);
9 int n=strlen(s),tot=0;
10 if (n<=2){//Case0
11 printf("%s\n",s);
12 continue;
13 }
14 for(int i=0;i<n;i++)
15 if (s[i]=='a')tot++;
16 if (s[n-1]=='a'){//Case1
17 for(int i=0;i<n-tot;i++)printf("b");
18 int one=0,sum=0;
19 if (s[n-2]=='a'){//Case1.1
20 for(int i=0;i<n;i++)
21 if ((s[i]=='a')&&(i<n-1)&&(s[i+1]=='b')){
22 if ((!i)||(s[i-1]=='b'))one++;
23 else sum++;
24 }
25 sum+=(one+1)/2;
26 for(int i=0;i<tot-2*sum;i++)printf("a");
27 printf("\n");
28 continue;
29 }
30 //Case1.2
31 bool flag=0;
32 for(int i=0;i<n-2;i++)
33 if ((s[i]=='a')&&(s[i+1]=='a')&&(s[i+2]=='a'))flag=1;
34 if (!flag){//Case1.2.1
35 if (tot&1)printf("a");
36 printf("\n");
37 continue;
38 }
39 for(int i=0;i<n;i++)
40 if ((s[i]=='a')&&(i<n-1)&&(s[i+1]=='b')){
41 if ((!i)||(s[i-1]=='b'))one++;
42 else sum++;
43 }
44 sum+=(one+1)/2;
45 for(int i=0;i<tot-2*sum;i++)printf("a");
46 printf("\n");
47 continue;
48 }
49 if (tot%2==0){//Case2
50 for(int i=0;i<n-tot;i++)printf("b");
51 printf("\n");
52 continue;
53 }
54 int flag=0,las=-1;
55 for(int i=1;i<n;i++)
56 if ((s[i-1]=='b')&&(s[i]=='a'))flag=1;
57 for(int i=0;i<n;i++)
58 if (s[i]=='a')las=i;
59 if ((!flag)||(las>=n-3)){//Case3
60 for(int i=0;i<las;i++)
61 if (s[i]=='b')printf("b");
62 printf("a");
63 for(int i=las+1;i<n;i++)
64 if (s[i]=='b')printf("b");
65 printf("\n");
66 continue;
67 }
68 //Case4
69 for(int i=0;i<n-tot-2;i++)printf("b");
70 if (s[0]!='a'){//Case4.1
71 bool flag=0;
72 for(int i=0;i<n-1;i++)
73 if ((s[i]=='a')&&(s[i+1]=='a'))flag=1;
74 if (!flag){//Case4.1.1
75 if (tot&1)printf("a");
76 printf("\n");
77 continue;
78 }
79 //Case4.1.2
80 int one=0,sum=-1;
81 for(int i=0;i<n;i++)
82 if ((s[i]=='a')&&(i<n-1)&&(s[i+1]=='b')){
83 if ((!i)||(s[i-1]=='b'))one++;
84 else sum++;
85 }
86 sum+=(one+1)/2;
87 for(int i=0;i<tot-2*sum;i++)printf("a");
88 printf("\n");
89 continue;
90 }
91 //Case4.2
92 flag=0;
93 for(int i=0;i<n-1;i++){
94 if ((s[i]=='b')&&(!flag))flag=1;
95 if ((flag)&&(s[i]=='a')&&(s[i+1]=='a'))flag=2;
96 }
97 if ((s[1]=='b')||(flag>1)){//Case4.2.1
98 bool flag=0;
99 for(int i=0;i<n-1;i++)
100 if ((s[i]=='a')&&(s[i+1]=='a'))flag=1;
101 if (!flag){
102 if (tot&1)printf("a");
103 printf("\n");
104 continue;
105 }
106 int one=0,sum=-1;
107 for(int i=0;i<n;i++)
108 if ((s[i]=='a')&&(i<n-1)&&(s[i+1]=='b')){
109 if ((!i)||(s[i-1]=='b'))one++;
110 else sum++;
111 }
112 sum+=(one+1)/2;
113 for(int i=0;i<tot-2*sum;i++)printf("a");
114 printf("\n");
115 continue;
116 }
117 //Case4.2.2
118 if ((s[0]!='a')||(s[1]!='a')||(s[2]!='a')){
119 if (tot&1)printf("a");
120 printf("\n");
121 continue;
122 }
123 int one=-1,sum=0;
124 for(int i=0;i<n;i++)
125 if ((s[i]=='a')&&(i<n-1)&&(s[i+1]=='b')){
126 if ((!i)||(s[i-1]=='b'))one++;
127 else sum++;
128 }
129 sum+=(one+1)/2;
130 for(int i=0;i<tot-2*sum;i++)printf("a");
131 printf("\n");
132 }
133 }
[atARC112E]Rvom and Rsrev的更多相关文章
- 【BZOJ3506】【Cqoi2014】排序机械臂
传送门(因为BZOJ上没有题面...所以放的是luogu的) 题意:你需要维护一个序列,支持区间翻转与查询区间最小. 解题思路:由于区间最小实际上每一次就是对应的整个数列的第k小,因此可以直接预处理解 ...
- 【BZOJ1500】【Noi2005】维修数列
题意原题很清楚了. 解题思路:裸的平衡树操作,注意动态开点即可. 细节还是比较多的,具体参见代码吧... #include <stdio.h> #include <algorithm ...
- BZOJ3223文艺平衡树——非旋转treap
此为平衡树系列第二道:文艺平衡树您需要写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 ...
- Android控件——Button与ImageButton
1.简单介绍
- C++ 全面刨析使用指针方法 _new _delete
指针 #include<iostream> using namespace std; int main() { ; int* pn;//声明 int* pn = &avr;//初始 ...
随机推荐
- Win10连WiFi显示无internet,安全 却可以正常上网
1.现象: win10连WiFi显示无internet,安全 可以正常上网 2.原因: Wind10升级系统补丁后,更新了系统检查是否联网的注册表配置,新的域名在国内存在无法连接情况.导致此问题发生 ...
- Windows 11正式版来了,下载、安装教程、一起奉上!
Windows 11正式版已经发布了,今天给大家更新一波Win11系统的安装方法,其实和Win10基本一样,有多种方法. 安装Win11前请先查看电脑是否支持Win11系统,先用微软自家的PC H ...
- typora博客笔记上传图片时不能显示
前言 markdown具有轻量化.易读易写等特性,并且对于图片.超链接.图片.数学公式都有支持. 但是最近在使用Typora的过程中我发现,在写文章笔记的时候导入的图片,因为图片保存在我们电脑本地,当 ...
- 题解 [ZJOI2019]语言
题目传送门 题目大意 给出一个 \(n\) 个点的树,现在有 \(m\) 次操作,每次可以选择一个链 \(s,t\),,然后这条链上每个点都会增加一个相同属性,问对于每一个点有与它相同属性的有多少个点 ...
- 创建HTML文档
目录 创建HTML文档 构筑基本的文档结构 DOCTYPE元素 DOCTYPE元素 代码清单1 使用DOCTYPE元素 html元素 html元素 代码清单2 使用html元素 head元素 head ...
- java程序远程连接Linux服务器
JSCH或 Ganymed Ganymed: Ganymed SSH-2 for Java是用纯Java实现SSH-2协议的一个包. 可以利用它直接在Java程序中连接SSH服务器.官网地址为 htt ...
- 微信小程序_快速入门01
这段时间,嗯,大四课程已经结束了,工作也已经找到了,但是呢,到公司报道的时间还没到,哈哈,马上就开始人生的第一份工作了,怎么说确实有点期待~ 在这段时间一方面为第一份工作做各种准备,另一方面也没有停止 ...
- MC-BE基岩版服务器搭建与日常维护
有部分内容被csdn和谐,强烈建议移步我的个人博客以获得更好的排版和阅读体验: xzajyjs.cn. 目录 环境搭建 开始部署 日常维护 服务器的白名单机制 定时备份 服务器升级 服务器模组安装 搭 ...
- Spring中属性注入的几种方式以及复杂属性的注入详解
在spring框架中,属性的注入我们有多种方式,我们可以通过set方法注入,可以通过构造方法注入,也可以通过p名称空间注入,方式多种多样,对于复杂的数据类型比如对象.数组.List.Map.Prope ...
- 【UE4 调试】C++ 几种编译方法和小技巧
编译方法 Visual Studio 2019 编译 默认编译 UnrealVS 快速编译 Editor 编译 一般 vs 编译完后,Editor会跟着热编译(有声音) 如果发现编译后代码没更新到Ed ...