考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算。

我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度。

我们设\(f_{i,j}\)为\(i\)点合法删除向左延伸的最大长度。

\(
f_{i,j} =
\left\{
\begin{aligned}
&f_{i - 1,j} (a[i] = ')'\ )\\
&f_{i - 1,j - 1}(a[i] = ')'\ )\\
&f_{i - 1,j} + f_{i - 1 ,j - 1} (a[i] = '?'\ )\\
\end{aligned}
\right.
\)

设\(g_{i,j}\)为向右延伸,则有同样的转移。

\(ans = \sum_{i = 1}^n\sum_{j = 1}^j f_{i,j} * g_{i + 1,j} * j\)

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 2005
#define mod 998244353 char a[N]; ll n;
ll f[N][N],g[N][N]; int main(){
scanf("%s",a + 1);
n = strlen(a + 1);
f[0][0] = 1;
for(int i = 1;i <= n;++i){
if(a[i] == '(' || a[i] == '?')
for(int j = 1;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j - 1]) % mod;
if(a[i] == ')' || a[i] == '?')
for(int j = 0;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
g[n + 1][0] = 1;
for(int i = n;i >= 1;--i){
if(a[i] == ')' || a[i] == '?')
for(int j = 1;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j - 1]) % mod;
if(a[i] == '(' || a[i] == '?')
for(int j = 0;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j]) % mod;
}
ll ans = 0;
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= n;++j)
ans = (ans + f[i][j] * g[i + 1][j] % mod * j % mod) % mod;
std::cout<<ans<<std::endl;
}

CF1264D1 Beautiful Bracket Sequence (easy version)的更多相关文章

  1. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  2. Numerical Sequence (easy version)

    http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...

  3. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  4. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  5. Ping-Pong (Easy Version)(DFS)

    B. Ping-Pong (Easy Version) time limit per test 2 seconds memory limit per test 256 megabytes input ...

  6. CF1225B1 TV Subscriptions (Easy Version)

    CF1225B1 TV Subscriptions (Easy Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...

  7. UESTC 1546 Bracket Sequence

                                        Bracket Sequence Time Limit: 3000MS   Memory Limit: 65536KB   64 ...

  8. CF#138 div 1 A. Bracket Sequence

    [#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...

  9. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. python之字符串,列表,集合,字典方法

    字典内置函数&方法 函数: 1.len(dict1):打印字典的键的个数 方法:dict1.( ) 2.clear():清空字典 3.copy():复制字典 4.fromkeys():使用指定 ...

  2. [no_code][Alpha]事后分析

    $( "#cnblogs_post_body" ).catalog() 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们要解决的 ...

  3. react 生命周期 个人见解

    初始化/实例期 gitDefaultprops 获取组件的默认props状态 gitInitialstate 类定义方式或是直接在构造函数中挂载state componentWillMount  组件 ...

  4. stm32直流电机驱动与测速学习总结

    通过实验发现,定时器的一个通道控制一个pwm信号. 在正式开始之前也可以参考这个视频学习资料 (stm32直流电机驱动) http://www.makeru.com.cn/live/1392_1218 ...

  5. 攻防世界 杂项 6.pure_color

    图片隐写 工具 使用StegSolve一把梭 另一种解法 右击图片编辑,画图工具打开,属性设置黑白.

  6. 使用google zxing生成二维码图片

    生成二维码工具类: 1 import java.awt.geom.AffineTransform; 2 import java.awt.image.AffineTransformOp; 3 impor ...

  7. cloudstack部署

    参考文档 https://blog.csdn.net/u012124304/article/details/80960504#Mysql_37 cloudstack的rpm包下载地址 http://d ...

  8. 【Go语言学习笔记】函数做参数和闭包

    函数做参数 在Go语言中,函数也是一种数据类型,我们可以通过type来定义它,它的类型就是所有拥有相同的参数,相同的返回值的一种类型.类似于重写(同名覆盖). 回调函数:函数有一个参数是函数类型,这个 ...

  9. Redis源码分析(intset)

    源码版本:4.0.1 源码位置: intset.h:数据结构的定义 intset.c:创建.增删等操作实现 1. 整数集合简介 intset是Redis内存数据结构之一,和之前的 sds. skipl ...

  10. 【java+selenium3】隐式等待+显式等待 (七)

    一.隐式等待 -- implicitlyWait 调用方式:driver.manage().timeouts().implicitlyWait(long time, TimeUnit unit); / ...