Solution -「集训队作业 2013」「洛谷 P4841」城市规划
\(\mathcal{Description}\)
link.
求 \(n\) 个结点的简单无向连通图个数,对 \(1004535809~(479\times2^{21}+1)\) 取模。
\(n\le1.3\times10^5\)。
\(\mathcal{Solution}\)
很简单的一道生成函数题。做完之后可以尝试一下点双和边双连通图计数 w。
令 \(f_i\) 为 \(i\) 个结点的简单无向图个数。显然 \(f_i=2^{i\choose 2}\)。则其生成函数 \(F(x)\) 有:
\]
考虑任意一个简单无向图肯定是由多个互相独立的简单无向连通图拼接而成。若 \(G(x)\) 是无向连通图的生成函数,则应有 \(F(x)=\exp G(x)\)。那么反过来,\(G(x)=\ln F(x)\)。求出 \(F(x)\),然后多项式求 \(\ln\) 即可。
复杂度 \(\mathcal O(n\log n)\)。
\(\mathcal{Code}\)
#include <cmath>
#include <cstdio>
const int MAXN = 1 << 18, MOD = 1004535809;
int n, len, inv[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5], F[MAXN + 5], G[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
namespace Poly {
const int G = 3;
inline int adjust ( const int n ) {
int ret = 0;
for ( int l = 1; l < n; l <<= 1, ++ ret );
return ret;
}
inline void NTT ( const int n, int* A, const int tp ) {
static int lstn = -1, rev[MAXN + 5] {};
if ( lstn ^ n ) {
int lgn = log ( n ) / log ( 2 ) + 0.5;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
lstn = n;
}
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
int w = qkpow ( G, ( MOD - 1 ) / i );
if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
for ( int j = 0; j < n; j += i ) {
for ( int k = j, r = 1; k < j + stp; ++ k, r = 1ll * r * w % MOD ) {
int ev = A[k], ov = 1ll * r * A[k + stp] % MOD;
A[k] = ( ev + ov ) % MOD, A[k + stp] = ( ev - ov + MOD ) % MOD;
}
}
}
if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = 1ll * A[i] * inv[n] % MOD;
}
inline void polyDer ( const int n, const int* A, int* R ) {
for ( int i = 1; i < n; ++ i ) R[i - 1] = 1ll * i * A[i] % MOD;
R[n - 1] = 0;
}
inline void polyInt ( const int n, const int* A, int* R ) {
for ( int i = n - 1; ~ i; -- i ) R[i + 1] = 1ll * inv[i + 1] * A[i] % MOD;
R[0] = 0;
}
inline void polyInv ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
int len = 1 << adjust ( n << 1 );
polyInv ( n + 1 >> 1, A, R );
for ( int i = 0; i < n; ++ i ) tmp[i] = A[i];
NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
for ( int i = 0; i < len; ++ i ) R[i] = ( 2 - 1ll * tmp[i] * R[i] % MOD + MOD ) % MOD * R[i] % MOD, tmp[i] = 0;
NTT ( len, R, -1 );
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
inline void polyLn ( const int n, const int* A, int* R ) {
static int tmp[2][MAXN + 5] {};
int len = 1 << adjust ( n << 1 );
polyDer ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
NTT ( len, tmp[0], 1 ), NTT ( len, tmp[1], 1 );
for ( int i = 0; i < len; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD;
NTT ( len, tmp[0], -1 ), polyInt ( n, tmp[0], R );
for ( int i = 0; i < len; ++ i ) tmp[0][i] = tmp[1][i] = 0;
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
inline void polyExp ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = 1 );
int len = 1 << adjust ( n << 1 );
polyExp ( n + 1 >> 1, A, R ), polyLn ( n, R, tmp );
tmp[0] = ( A[0] + 1 - tmp[0] + MOD ) % MOD;
for ( int i = 1; i < n; ++ i ) tmp[i] = ( A[i] - tmp[i] + MOD ) % MOD;
NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
for ( int i = 0; i < len; ++ i ) R[i] = 1ll * R[i] * tmp[i] % MOD, tmp[i] = 0;
NTT ( len, R, -1 );
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
} // namespace Poly.
inline void init () {
len = 1 << Poly::adjust ( n + 1 );
inv[1] = fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for ( int i = 2; i <= len << 1; ++ i ) {
fac[i] = 1ll * i * fac[i - 1] % MOD;
inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
}
}
int main () {
scanf ( "%d", &n ), init ();
for ( int i = 0; i < len; ++ i ) F[i] = 1ll * qkpow ( 2, ( i * ( i - 1ll ) >> 1 ) % ( MOD - 1 ) ) * ifac[i] % MOD;
Poly::polyLn ( len, F, G );
printf ( "%d\n", int ( 1ll * G[n] * fac[n] % MOD ) );
return 0;
}
Solution -「集训队作业 2013」「洛谷 P4841」城市规划的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】
题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
随机推荐
- 编写Hive的UDF(查询平台数据同时向mysql添加数据)
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6812629187518530052/ 可能会有一些截图中会有错误提示,是因为本地的包一直包下载有问题,截完图已经下 ...
- HIVE理论学习笔记
概述 参加了新的公司新的工作新的环境之后,本人必须学习更多的知识,所以稳固之前的知识和学习新的知识是重中之重,新的公司把hadoop大部分的组件都进行了架构源码深度改造,所以使用过程确实遇到一些麻烦, ...
- CTF-sql-宽字节注入
本文章主要涉及sql宽字节注入注入的原理讲解,如有错误,望指出.(附有目录,如需查看请点右下角) 一.首先介绍一下本篇文章所用到的知识点: 常用到的url编码: 空格:%20 单引号:%27 在sql ...
- 介绍一下主流的浏览器的开发者工具(js调试和查看网络请求)
1.打开开发者工具:右键-->检查 (快捷键 f12) 2.开发者工具介绍: (1): 选择页面的dom进行查看 (2):设备适配 (3)元素: ① 可以查找到界面对应的dom: ② 通过计算样 ...
- github与gitlab创建新仓库
github创建新仓库 然后根据下一页的命令提示进行即可 gitlab创建新仓库 git init git remote add origin git@***.***.**.**:user/proje ...
- 【刷题-LeetCode】304. Range Sum Query 2D - Immutable
Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...
- manjaro20安装TIM
安装 yaourt -S deepin-wine-tim 失败 yaourt -S deepin.qq.office 成功,但是tim版本没有待办,版本比较旧. 配置分辨率 https://blog. ...
- mate10碎屏机当成小电脑使用尝试
1.屏碎了修起来300-400,自己动手至少也要260以上买个屏幕钱. 手机图案锁屏也不知道密码,给我手机的亲戚忘了.当年手机被车压弯了. 对着恢复教程,盲屏幕猜着按还原了. 2.之后一路从8代系统更 ...
- 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引
系列背景 在进入微服务的实践系列之前,我们一起来学习和实践一下.NET应用开发生态中一些比较重要的技术,这个系列就是关于GraphQL在.NET 6应用中的实现. 系列导航 使用Hot Chocola ...
- JAVA主要类集分类
包装类 Integer包装类 方法 返回值 功能描述 byteValue() byte 以 byte 类型返回该 Integer 的值 intValue() int 以 int 型返回此 Intege ...