\(\mathcal{Description}\)

  Link.

  给定数列 \(\{a_n\}\),求排列 \(\{p_n\}\) 的个数,使得 \((\forall i\in[1,n))(a_{p_i}a_{p_{i+1}}\not=k^2)\),其中 \(k\in\mathbb N\)。

\(\mathcal{Solution}\)

  首先消掉每个数的平方因子,那么限制条件转化为 \(a_{p_i}\not=a_{p_{i+1}}\),我们可以把相等的数放在一个桶里。设桶的大小 \(s_1,s_2,\cdots,s_m\)。

  若直接计数,难免需要考虑用过的 \(a\) 的信息。引入容斥,令 \(f_i\) 表示至少有 \(i\) 对数相邻数相等。则答案为:

\[\sum_{i=0}^{n-1}(-1)^if_i
\]

  再用 DP 求 \(f\),令 \(g(i,j)\) 表示把前 \(i\) 个桶分为 \(j\) 块,保证块内元素相同的方案数。转移考虑第 \(i\) 个桶的贡献:

\[g(i,j)=\sum_{k=1}^{\min\{s_i,j\}}\frac{g(i-1,j-k)\binom{s_m-1}{k-1}s_m!}{k!}
\]

  比较显然嘛,其中 \(\binom{s_m-1}{k-1}\) 是隔板法划分第 \(i\) 个桶,\(s_m!\) 表示元素有序,\(k!\) 表示块无序。

  最后,找到 \(f\) 和 \(g\) 的关系:、

\[f_{n-k}=g(m,k)k!,~k=1,2,\dots,n
\]

  可以发现 \(g(m,k)\) 实质上就是“至多有 \(k-1\) 个数不相邻”的方案数。

  暴力求这两个东西就好,复杂度 \(\mathcal O(n^3)\)。

\(\mathcal{Code}\)

#include <map>
#include <cstdio> const int MAXN = 300, MOD = 1e9 + 7;
int n, fac[MAXN + 5], ifac[MAXN + 5], f[MAXN + 5], g[MAXN + 5][MAXN + 5];
std::map<int, int> num; inline void addeq ( int& a, const int b ) { if ( ( a += b ) >= MOD ) a -= MOD; } inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} inline void init ( const int n ) {
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
} inline int C ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
} int main () {
scanf ( "%d", &n ), init ( n );
for ( int i = 1, a; i <= n; ++ i ) {
scanf ( "%d", &a );
for ( int j = 2; j * j <= a; ++ j ) for ( ; ! ( a % ( j * j ) ); a /= j * j );
++ num[a];
}
int indx = 0, las = 0;
g[0][0] = 1;
for ( auto p: num ) {
++ indx, las += p.second;
for ( int j = 1; j <= las; ++ j ) {
int& cur = g[indx][j];
for ( int k = 1; k <= j && k <= p.second; ++ k ) {
addeq ( cur, 1ll * g[indx - 1][j - k]
* C ( p.second - 1, k - 1 ) % MOD * fac[p.second] % MOD * ifac[k] % MOD );
}
}
}
for ( int i = 1; i <= n; ++ i ) f[n - i] = 1ll * g[indx][i] * fac[i] % MOD;
int ans = 0;
for ( int i = 0; i < n; ++ i ) addeq ( ans, ( i & 1 ? MOD - 1ll : 1ll ) * f[i] % MOD );
printf ( "%d\n", ans );
return 0;
}

Solution -「CF 840C」On the Bench的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. Python实战案例系列(一)

    本节目录 烟草扫码数据统计 奖学金统计 实战一.烟草扫码数据统计 1. 需求分析 根据扫码信息在数据库文件中匹配相应规格详细信息,并进行个数统计 条码库.xls 扫码.xlsx 一个条码对应多个规格名 ...

  2. 通过了解Servlet和Http之间的关系,了解web中http通信使用(二)

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6512399401825075719/ 1.<Servlet简单实现开发部署过程> 2.<Serv ...

  3. Centos安装DenyHosts

    一.背景 个人申请的腾讯云主机被扫描端口,数百次登录失败的尝试 解决方法:安装工具,记录并屏蔽恶意访问. 二.检查环境 系统安装的sshd是否支持tcp_wrappers(默认都支持) ldd /us ...

  4. Mybatis-Plus的引用

    一.依赖 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-b ...

  5. Redis之持久化方式详解

    背景:Redis之所以能够在技术革新发展迅速的时代超越Memcache等其他Nosql数据库,最主要的一点是Redis提供数据持久化,能够根据持久化策略将缓存数据灵活的写到磁盘上,更好地满足了当下海量 ...

  6. Java传递变量和对象的区别

    传递对象 public class Demo03 { //引用传递:(实际上还是值传递)对于引用数据类型来说,传递的则是地址的副本(对象的地址).但由于地址副本和原来的类似,因此传递过去后形参也只想同 ...

  7. [开发笔记usbTOcan]PyUSB访问设备

    前面的几个章节的介绍,基本把usbTOcan的底层代码设计好,现在需要介绍PC端的PyUSB进行简单的测试. 在文章开始之前,需要简单的介绍一下整个系统. 0 | 部署 这里使用了两块TM4C123G ...

  8. 【记录一个问题】go1.17中,把代码文件放在main.go的同级目录,导致无法编译

    写了类似目录结构的代码: myproxy - main.go - server.go 编译的时候总是出现main.go中找不到类型定义.但是用goland却可以直接执行. 最后调整了目录结构后解决: ...

  9. gin源码解读2-揭开gin的神秘面纱

    数据如何在gin中流转 func main() { gin.SetMode(gin.DebugMode) // 设置为开发模式 router := gin.Default() _ = router.S ...

  10. golang中通过递归或通道实现斐波那契数列

    1. 循环实现 package main import "fmt" func fibonacciFor(nums int) (s1 []int) { // 循环实现斐波那切数列 n ...