STM32—驱动GY85-IMU模块
GY85是一个惯性测量模块,内部集成了三轴加速度计、三轴陀螺仪、电子罗盘、气压传感器等芯片,用于测量和报告设备速度、方向、重力,模块可以将加速度计、陀螺仪、电子罗盘等传感器的数据进行综合,在上位机可以结合各种数据进行惯导算法融合。
这里介绍一下STM32驱动GY85的代码,模块与STM32的通信接口是IIC协议,我们采用软件IO口模拟IIC时序进行通信,读取到各个芯片的数据存放在全局变量,关于GY85的介绍以及一些基础知识可以参考这篇博客:点击跳转
芯片说明:
- ADXL345:三轴加速度计,测量Roll、Pitch(航偏角Yaw无法测量)
- L3G4200D:三轴陀螺仪,测量Roll、Pitch、Yaw(配合加速度计得出准确温度的三个角度)
- HMC5883L:电子罗盘,测量与地磁北极的偏转角度
- BMP085:气压传感器,测量大气压、温度
下面就是全部的驱动代码了:
/*******************************************************************************
* 函数功能:串口2发送数据 HMC5883L + ADXL345 + BMP085+L3G4200D(串口2在mian初始化完成)
* 波特率:115200
* 时间:2020.7.12
* 修改注释:全
*******************************************************************************/
/*芯片说明
*ADXL345:三轴加速度计,测量Roll、Pitch(航偏角Yaw无法测量)
*L3G4200D:三轴陀螺仪,测量Roll、Pitch、Yaw(配合加速度计得出准确温度的三个角度)
*HMC5883L:电子罗盘,测量与地磁北极的偏转角度
*BMP085:气压传感器,测量大气压、温度
*/
#include "IMU.h"
GPIO_InitTypeDef GPIO_InitStructure;
ErrorStatus HSEStartUpStatus;
#define FALSE 0
#define TRUE 1
#define u8 unsigned char
#define u32 unsigned int
#define uchar unsigned char
#define uint unsigned int
#define OSS 0 // BMP085使用
//L3G4200D内部寄存器
#define CTRL_REG1 0x20
#define CTRL_REG2 0x21
#define CTRL_REG3 0x22
#define CTRL_REG4 0x23
#define CTRL_REG5 0x24
#define OUT_X_L 0x28
#define OUT_X_H 0x29
#define OUT_Y_L 0x2A
#define OUT_Y_H 0x2B
#define OUT_Z_L 0x2C
#define OUT_Z_H 0x2D
//定义器件在IIC总线中的从地址,根据ALT ADDRESS地址引脚不同修改
#define HMC5883L_Addr 0x3C //磁场传感器器件地址
#define ADXL345_Addr 0xA6 //加速度传感器器件地址
#define BMP085_Addr 0xee //气压传感器器件地址
#define L3G4200_Addr 0xD2 //陀螺仪传感器器件地址
unsigned char BUF[8]; //接收数据缓存区,作用是暂时缓存寄存器的值,之后做算法分析
char test=0;
int x,y;
uchar ge,shi,bai,qian,wan,shiwan; //uart,显示变量
short T_X,T_Y,T_Z; //陀螺仪输出数据
float angle; //电子罗盘输出角度,与地磁北极的偏转角度
/* 加速度计ADXL345 数据 */
int A_X,A_Y,A_Z; //加速度计读取的寄存器数据
short data_xyz[3]; //加速度计合成数据
float Q,T,K; //加速度计x、y、z原始数据
float Roll,Pitch; //Roll,Pitch角度
/* BMP085使用的变量 */
short ac1;
short ac2;
short ac3;
unsigned short ac4;
unsigned short ac5;
unsigned short ac6;
short b1;
short b2;
short mb;
short mc;
short md;
long temperature; //温度
long pressure; //气压
//************************************++++++++++++++++++++++++++++++++
/*模拟IIC端口输出输入定义
*SDA:PB9
*SCL:PB8
*/
#define SCL_H GPIOB->BSRR = GPIO_Pin_8
#define SCL_L GPIOB->BRR = GPIO_Pin_8
#define SDA_H GPIOB->BSRR = GPIO_Pin_9
#define SDA_L GPIOB->BRR = GPIO_Pin_9
#define SCL_read GPIOB->IDR & GPIO_Pin_8
#define SDA_read GPIOB->IDR & GPIO_Pin_9
/* 转换数据 */
void conversion(long temp_data)
{
shiwan=temp_data/100000+0x30 ;
temp_data=temp_data%100000; //取余运算
wan=temp_data/10000+0x30 ;
temp_data=temp_data%10000; //取余运算
qian=temp_data/1000+0x30 ;
temp_data=temp_data%1000; //取余运算
bai=temp_data/100+0x30 ;
temp_data=temp_data%100; //取余运算
shi=temp_data/10+0x30 ;
temp_data=temp_data%10; //取余运算
ge=temp_data+0x30;
}
/*******************************************************************************
* Function Name : I2C_GPIO_Config
* Description : Configration Simulation IIC GPIO
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : I2C_delay
* Description : Simulation IIC Timing series delay
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_delay(void)
{
u8 i=30; //这里可以优化速度 ,经测试最低到5还能写入
while(i)
{
i--;
}
}
void delay5ms(void)
{
int i=5000;
while(i)
{
i--;
}
}
/*******************************************************************************
* Function Name : I2C_Start
* Description : Master Start Simulation IIC Communication
* Input : None
* Output : None
* Return : Wheather Start
****************************************************************************** */
uint8_t I2C_Start(void)
{
SDA_H;
SCL_H;
I2C_delay();
if(!SDA_read)return FALSE; //SDA线为低电平则总线忙,退出
SDA_L;
I2C_delay();
if(SDA_read) return FALSE; //SDA线为高电平则总线出错,退出
SDA_L;
I2C_delay();
return TRUE;
}
/*******************************************************************************
* Function Name : I2C_Stop
* Description : Master Stop Simulation IIC Communication
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Stop(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SDA_H;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_Ack
* Description : Master Send Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_Ack(void)
{
SCL_L;
I2C_delay();
SDA_L;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_NoAck
* Description : Master Send No Acknowledge Single
* Input : None
* Output : None
* Return : None
****************************************************************************** */
void I2C_NoAck(void)
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
SCL_L;
I2C_delay();
}
/*******************************************************************************
* Function Name : I2C_WaitAck
* Description : Master Reserive Slave Acknowledge Single
* Input : None
* Output : None
* Return : Wheather Reserive Slave Acknowledge Single
****************************************************************************** */
uint8_t I2C_WaitAck(void) //返回为:=1有ACK,=0无ACK
{
SCL_L;
I2C_delay();
SDA_H;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
SCL_L;
I2C_delay();
return FALSE;
}
SCL_L;
I2C_delay();
return TRUE;
}
/*******************************************************************************
* Function Name : I2C_SendByte
* Description : Master Send a Byte to Slave
* Input : Will Send Date
* Output : None
* Return : None
****************************************************************************** */
void I2C_SendByte(u8 SendByte) //数据从高位到低位//
{
u8 i=8;
while(i--)
{
SCL_L;
I2C_delay();
if(SendByte&0x80)
SDA_H;
else
SDA_L;
SendByte<<=1;
I2C_delay();
SCL_H;
I2C_delay();
}
SCL_L;
}
/*******************************************************************************
* Function Name : I2C_RadeByte
* Description : Master Reserive a Byte From Slave
* Input : None
* Output : None
* Return : Date From Slave
****************************************************************************** */
unsigned char I2C_RadeByte(void) //数据从高位到低位//
{
u8 i=8;
u8 ReceiveByte=0;
SDA_H;
while(i--)
{
ReceiveByte<<=1;
SCL_L;
I2C_delay();
SCL_H;
I2C_delay();
if(SDA_read)
{
ReceiveByte|=0x01;
}
}
SCL_L;
return ReceiveByte;
}
//ZRX
//单字节写入*******************************************
uint8_t Single_Write(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char REG_data) //void
{
if(!I2C_Start())return FALSE;
I2C_SendByte(SlaveAddress); //发送设备地址+写信号//I2C_SendByte(((REG_Address & 0x0700) >>7) | SlaveAddress & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop(); return FALSE;}
I2C_SendByte(REG_Address ); //设置低起始地址
I2C_WaitAck();
I2C_SendByte(REG_data);
I2C_WaitAck();
I2C_Stop();
delay5ms();
return TRUE;
}
//单字节读取*****************************************
unsigned char Single_Read(unsigned char SlaveAddress,unsigned char REG_Address)
{ unsigned char REG_data;
if(!I2C_Start())return FALSE;
I2C_SendByte(SlaveAddress); //I2C_SendByte(((REG_Address & 0x0700) >>7) | REG_Address & 0xFFFE);//设置高起始地址+器件地址
if(!I2C_WaitAck()){I2C_Stop();test=1; return FALSE;}
I2C_SendByte((u8) REG_Address); //设置低起始地址
I2C_WaitAck();
I2C_Start();
I2C_SendByte(SlaveAddress+1);
I2C_WaitAck();
REG_data= I2C_RadeByte();
I2C_NoAck();
I2C_Stop();
//return TRUE;
return REG_data;
}
/*
********************************************************************************
** 函数名称 : Delay(vu32 nCount)
** 函数功能 : 延时函数
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delay(u32 nCount)
{
for(; nCount != 0; nCount--);
}
/*
********************************************************************************
** 函数名称 : void Delayms(vu32 m)
** 函数功能 : 长延时函数 m=1,延时1ms
** 输 入 : 无
** 输 出 : 无
** 返 回 : 无
********************************************************************************
*/
void Delayms(u32 m)
{
u32 i;
for(; m != 0; m--)
for (i=0; i<50000; i++);
}
//************************************************
void USART2_SendData(unsigned char SendData)
{
USART_SendData(USART2, SendData);
Delayms(1);
}
//********************************************************************
long bmp085ReadTemp(void)
{ short temp_ut;
Single_Write(BMP085_Addr,0xF4,0x2E);
Delayms(5); // max time is 4.5ms
temp_ut = Single_Read(BMP085_Addr,0xF6);
temp_ut = (temp_ut<<8)| Single_Read(BMP085_Addr,0xF7);
return (long) temp_ut ;
}
//*************************************************************
long bmp085ReadPressure(void)
{
long pressure = 0;
Single_Write(BMP085_Addr,0xF4,0x34);
Delayms(5); // max time is 4.5ms
pressure = Single_Read(BMP085_Addr,0xF6);
pressure = (pressure<<8)| Single_Read(BMP085_Addr,0xF7);
pressure &= 0x0000FFFF;
return pressure;
}
//******************
void Send_ADXL345_data(int dis_data)
{
float temp ;
if(dis_data>0x7fff)dis_data-=0xffff;
if(dis_data<0){
dis_data=-dis_data;
USART_SendData(USART1,'-');
Delayms(2);
}
else
{
USART_SendData(USART1,'+');
Delayms(2);
}
temp=(float)dis_data*3.9; //计算数据和显示,查考ADXL345快速入门第4页
conversion(temp); //转换出显示需要的数据
USART2_SendData(qian);
USART2_SendData('.');
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData(ge);
USART2_SendData('g');
}
//***************************************
//******************
void Send_L3G420D_data(short dis_data)
{ float temp ;
if(dis_data<0){
dis_data=-dis_data;
USART_SendData(USART1,'-');
Delayms(2);
}
else
{
USART_SendData(USART1,'+');
Delayms(2);
}
temp=(float)dis_data*0.07; //计算数据和显示,查考ADXL345快速入门第4页
conversion(temp); //转换出显示需要的数据
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData(ge);
}
//***************************************
void Send_HMC5883L(void)
{
USART2_SendData('H');
USART2_SendData('M');
USART2_SendData('C');
USART2_SendData('5');
USART2_SendData('8');
USART2_SendData('8');
USART2_SendData('3');
USART2_SendData('L');
USART2_SendData(':');
conversion(angle);
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData(ge);
USART2_SendData('`');
USART2_SendData(0x0d);
USART2_SendData(0x0a);
}
//*************************************************
void Send_BMP085(void)
{
USART2_SendData('B');
USART2_SendData('M');
USART2_SendData('P');
USART2_SendData('0');
USART2_SendData('8');
USART2_SendData('5');
USART2_SendData(':');
USART2_SendData('t');
USART2_SendData('=');
conversion(temperature);
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData('.');
USART2_SendData(ge);
USART2_SendData('`');
USART2_SendData('C');
USART2_SendData(' ');
USART2_SendData('p');
USART2_SendData('=');
conversion(pressure);
USART2_SendData(shiwan);
USART2_SendData(wan);
USART2_SendData(qian);
USART2_SendData('.');
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData(ge);
USART2_SendData('K');
USART2_SendData('p');
USART2_SendData('a');
USART2_SendData(0x0d);
USART2_SendData(0x0a);
}
//*****************************************************
void Send_ADXL345(void)
{
USART2_SendData('A');
USART2_SendData('D');
USART2_SendData('X');
USART2_SendData('L');
USART2_SendData('3');
USART2_SendData('4');
USART2_SendData('5');
USART2_SendData(':');
USART2_SendData('X');
USART2_SendData('=');
Send_ADXL345_data(A_X);
USART2_SendData('Y');
USART2_SendData('=');
Send_ADXL345_data(A_Y);
USART2_SendData('Z');
USART2_SendData('=');
Send_ADXL345_data(A_Z);
adxl345_angle();
USART2_SendData(0x0d);
USART2_SendData(0x0a);
}
//*****************************************************
void Send_L3G4200D(void)
{
USART2_SendData('L');
USART2_SendData('3');
USART2_SendData('G');
USART2_SendData('4');
USART2_SendData('2');
USART2_SendData('0');
USART2_SendData('0');
USART2_SendData('D');
USART2_SendData(':');
USART2_SendData('X');
USART2_SendData('=');
Send_L3G420D_data(T_X);
USART2_SendData('Y');
USART2_SendData('=');
Send_L3G420D_data(T_Y);
USART2_SendData('Z');
USART2_SendData('=');
Send_L3G420D_data(T_Z);
USART2_SendData(0x0d);
USART2_SendData(0x0a);
}
//******************************************************
void read_HMC5883L(void)
{
Single_Write(HMC5883L_Addr,0x00,0x14); //
Single_Write(HMC5883L_Addr,0x02,0x00); //
Delayms(10);
BUF[1]=Single_Read(HMC5883L_Addr,0x03);//OUT_X_L_A
BUF[2]=Single_Read(HMC5883L_Addr,0x04);//OUT_X_H_A
BUF[3]=Single_Read(HMC5883L_Addr,0x07);//OUT_Y_L_A
BUF[4]=Single_Read(HMC5883L_Addr,0x08);//OUT_Y_H_A
x=(BUF[1] << 8) | BUF[2]; //Combine MSB and LSB of X Data output register
y=(BUF[3] << 8) | BUF[4]; //Combine MSB and LSB of Z Data output register
if(x>0x7fff)x-=0xffff;
if(y>0x7fff)y-=0xffff;
angle= atan2(y,x) * (180 / 3.14159265) + 180; // angle in degrees
}
//****************************************
void read_ADXL345(void)
{
BUF[0]=Single_Read(ADXL345_Addr,0x32);//OUT_X_L_A
BUF[1]=Single_Read(ADXL345_Addr,0x33);//OUT_X_H_A
BUF[2]=Single_Read(ADXL345_Addr,0x34);//OUT_Y_L_A
BUF[3]=Single_Read(ADXL345_Addr,0x35);//OUT_Y_H_A
BUF[4]=Single_Read(ADXL345_Addr,0x36);//OUT_Z_L_A
BUF[5]=Single_Read(ADXL345_Addr,0x37);//OUT_Z_H_A
A_X=(BUF[1]<<8)+BUF[0]; //合成数据
A_Y=(BUF[3]<<8)+BUF[2]; //合成数据
A_Z=(BUF[5]<<8)+BUF[4]; //合成数据
}
//*****************************************
void read_BMP085(void)
{
long ut;
long up;
long x1, x2, b5, b6, x3, b3, p;
unsigned long b4, b7;
ut = bmp085ReadTemp(); // 读取温度
// ut = bmp085ReadTemp(); // 读取温度
up = bmp085ReadPressure(); // 读取压强
// up = bmp085ReadPressure(); // 读取压强
x1 = ((long)ut - ac6) * ac5 >> 15;
x2 = ((long) mc << 11) / (x1 + md);
b5 = x1 + x2;
temperature = (b5 + 8) >> 4;
//****************
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
b3 = (((long)ac1 * 4 + x3) + 2)/4;
x1 = ac3 * b6 >> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (unsigned long) (x3 + 32768)) >> 15;
b7 = ((unsigned long) up - b3) * (50000 >> OSS);
if( b7 < 0x80000000)
p = (b7 * 2) / b4 ;
else
p = (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
pressure = p + ((x1 + x2 + 3791) >> 4);
}
//***************************
void Init_ADXL345(void)
{
Single_Write(ADXL345_Addr,0x31,0x0B); //测量范围,正负16g,13位模式
// Single_Write(ADXL345_Addr,0x2C,0x0e); //速率设定为100hz 参考pdf13页
Single_Write(ADXL345_Addr,0x2D,0x08); //选择电源模式 参考pdf24页
Single_Write(ADXL345_Addr,0x2E,0x80); //使能 DATA_READY 中断
// Single_Write(ADXL345_Addr,0x1E,0x00); //X 偏移量 根据测试传感器的状态写入pdf29页
// Single_Write(ADXL345_Addr,0x1F,0x00); //Y 偏移量 根据测试传感器的状态写入pdf29页
// Single_Write(ADXL345_Addr,0x20,0x05); //Z 偏移量 根据测试传感器的状态写入pdf29页
}
//****************************
void Init_BMP085(void)
{
ac1 = Single_Read(BMP085_Addr,0xAA);
ac1 = (ac1<<8)|Single_Read(BMP085_Addr,0xAB);
ac2 = Single_Read(BMP085_Addr,0xAC);
ac2 = (ac2<<8)| Single_Read(BMP085_Addr,0xAD);
ac3 = Single_Read(BMP085_Addr,0xAE);
ac3 = (ac3<<8)| Single_Read(BMP085_Addr,0xAF);
ac4 = Single_Read(BMP085_Addr,0xB0);
ac4 = (ac4<<8)| Single_Read(BMP085_Addr,0xB1);
ac5 = Single_Read(BMP085_Addr,0xB2);
ac5 = (ac5<<8)| Single_Read(BMP085_Addr,0xB3);
ac6 = Single_Read(BMP085_Addr,0xB4);
ac6 = (ac6<<8)| Single_Read(BMP085_Addr,0xB5);
b1 = Single_Read(BMP085_Addr,0xB6);
b1 = (b1<<8)| Single_Read(BMP085_Addr,0xB7);
b2 = Single_Read(BMP085_Addr,0xB8);
b2 = (b2<<8)| Single_Read(BMP085_Addr,0xB9);
mb = Single_Read(BMP085_Addr,0xBA);
mb = (mb<<8)| Single_Read(BMP085_Addr,0xBB);
mc = Single_Read(BMP085_Addr,0xBC);
mc = (mc<<8)| Single_Read(BMP085_Addr,0xBD);
md = Single_Read(BMP085_Addr,0xBE);
md = (md<<8)| Single_Read(BMP085_Addr,0xBF);
}
//****************************
void Init_HMC5883L(void)
{
Single_Write(HMC5883L_Addr,0x00,0x14); //
Single_Write(HMC5883L_Addr,0x02,0x00); //
}
//*****************************************
//************初始化L3G4200D*********************************
void Init_L3G4200D(void)
{
Single_Write(L3G4200_Addr,CTRL_REG1, 0x0f);
Single_Write(L3G4200_Addr,CTRL_REG2, 0x00);
Single_Write(L3G4200_Addr,CTRL_REG3, 0x08);
Single_Write(L3G4200_Addr,CTRL_REG4, 0x30); //+-2000dps
Single_Write(L3G4200_Addr,CTRL_REG5, 0x00);
}
//******读取L3G4200D数据****************************************
void read_L3G4200D(void)
{
BUF[0]=Single_Read(L3G4200_Addr,OUT_X_L);
BUF[1]=Single_Read(L3G4200_Addr,OUT_X_H);
T_X= (BUF[1]<<8)|BUF[0];
BUF[2]=Single_Read(L3G4200_Addr,OUT_Y_L);
BUF[3]=Single_Read(L3G4200_Addr,OUT_Y_H);
T_Y= (BUF[3]<<8)|BUF[2];
BUF[4]=Single_Read(L3G4200_Addr,OUT_Z_L);
BUF[5]=Single_Read(L3G4200_Addr,OUT_Z_H);
T_Z= (BUF[5]<<8)|BUF[4];
}
//******************ADXL345计算倾斜角度************
void adxl345_angle(void)
{
data_xyz[0]=A_X; //合成数据
data_xyz[1]=A_Y; //合成数据
data_xyz[2]=A_Z; //合成数据
//分别是加速度X,Y,Z的原始数据,10位的
Q=(float)data_xyz[0]*3.9;
T=(float)data_xyz[1]*3.9;
K=(float)data_xyz[2]*3.9;
Q=-Q;
Roll=(float)(((atan2(K,Q)*180)/3.14159265)+180); //X轴角度值
Pitch=(float)(((atan2(K,T)*180)/3.14159265)+180); //Y轴角度值
//conversion(Pitch); //需要显示时候请更换
conversion(Roll);
USART2_SendData(' ');
USART2_SendData(' ');
USART2_SendData(bai);
USART2_SendData(shi);
USART2_SendData(ge);
}
int main(void)
{
DEBUG_USART_Config();
Init_HMC5883L();
Init_ADXL345();
Init_BMP085();
Init_L3G4200D();
while(1)
{
read_HMC5883L();
Send_HMC5883L();
read_ADXL345();
Send_ADXL345();
read_L3G4200D();
Send_L3G4200D();
read_BMP085();
Send_BMP085();
Delayms(20);
}
}
///*************结束***************/
STM32—驱动GY85-IMU模块的更多相关文章
- STM32—驱动BT-06蓝牙模块传输数据
文章目录 BT-06简介 数据透传 配置串口 USART1初始化函数 USART2初始化函数 USART2的NVIC配置 USART1串口重映射 BT-06简介 BT06蓝牙模块是专为智能无线数据传输 ...
- STM32驱动TEA5767收音机模块
Tea5767是飞利浦公司出的一款集成化的收音机芯片,大四的时候机缘巧合遇到了这个芯片,用了一下,写点资料 主要特性 TEA5767HN是一款低功耗立体声收音IC,广泛应用于手机MP3 .MP 4 播 ...
- STM32—驱动HC-SR04超声波测距模块
文章目录 超声波测距原理 HC-SR04工作原理 STM32实现驱动 1.引脚的配置 2.时序控制 3.时间差测量 4.如何将距离测出来 超声波测距原理 利用HC-SR04超声波测距模块可以实现比较精 ...
- stm32驱动超声波模块
下面是关于stm32驱动超声波模块的一段代码,有需要的朋友可以复制参考,希望对大家能够有所帮助和启发. #define HCSR04_PORT GPIOB #define HCSR04_CLK RCC ...
- STM32驱动ILI9341控制器控制TFTLCD显示
STM32驱动ILI9341控制器控制TFTLCD显示 一.用STM32控制TFTLCD显示的编程方法,在编程驱动TFTLCD液晶显示器之前,我们先熟悉以下概念: 1.色彩深度,这是一个与TFTLCD ...
- AMS5601的ardunio和STM32驱动开发
AMS5601的ardunio和STM32驱动开发 本文有麦粒电子撰写,并提供相应产品服务. 前言 目前ams关于磁编码芯片用的比较多的可能是ams5600,能够输出pwm信号,电压信号以及I2C通信 ...
- esp8266的STM32驱动
esp8266的STM32驱动,数据发送接收由DMA完成,释放CPU. 目前只能发送返回消息为成功或失败的AT命令,并判断是否成功,详见esp8266_cmd():其它返回消息不可预知的命令(如查看A ...
- STM32驱动DS18B20
DS18B20 是由 DALLAS 半导体公司推出的一种的“一线总线”接口的温度传感器.与传 统的热敏电阻等测温元件相比,它是一种新型的体积小.适用电压宽.与微处理器接口简单的 数字化温度传感器.一线 ...
- STM32驱动OV7725摄像头颜色识别
实验目的: 使用stm32驱动OV7725摄像头进行图像实时采集,在tft屏幕上实时显示并识别图像中的特定颜色,在颜色的周围画上框. 实验现象: 我的工程代码链接: http://download.c ...
随机推荐
- jvm代码热替换过程中异常
BTrace java.lang.NoClassDefFoundError: javax/xml/bind/JAXBException 具体如下: 1. 信这个问题很多小伙伴已经遇到了,这是在你的jd ...
- 报错处理:end Kernel panic - not syncing: Out of memory and no killable processes
报错如下: end Kernel panic - not syncing: Out of memory and no killable processes [ 2.113892] [<fffff ...
- 理解Python中的闭包
1.定义 闭包是函数式编程的一个重要的语法结构,函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式).在面向过程编程中,我们见到过函数(function):在面向对象编程中,我们见 ...
- Java开源协同办公项目:数据中心,自定义查询语句使用教程
O2OA提供的数据管理中心,可以让用户通过配置的形式完成对数据的汇总,统计和数据分组展现,查询和搜索数据形成列表数据展现.也支持用户配置独立的数据表来适应特殊的业务的数据存储需求.本文主要介绍如何在O ...
- 家庭账本开发day08
对查询到额数据进行相关的操作,删除.对删除按钮绑定事件 点击后发送ajax请求到servlet,删除相关的数据后,返回flag到前端 若后台删除成功,则前台进行相应的.close():输出点击行的数据 ...
- 【剑指offer】05. 替换空格
剑指 Offer 05. 替换空格 知识点:: 题目描述 请实现一个函数,把字符串 s 中的每个空格替换成"%20". 示例 输入:s = "We are happy.& ...
- python基础之列表推导式
#列表推导式 ---> 返回的是列表 for语句 效率更高# 1*1 2*2 3*3 4*4 5*5 6*6 7*7 8*8 9*9# import time# to = time.clock( ...
- Java 比较两个Word文档差异
本文介绍使用Spire.Doc for Java的比较功能来比较两个相似Word文档的差异.需要使用的版本为3.8.8或者后续发布的新版本.可下载jar包,解压将lib文件夹下的Spire.doc.j ...
- FiddlerEverywhere 的配置和基本应用
一.下载大家自行在官网下载即可,这个可以当做是fiddler的升级版本,里面加了postman的功能,个人感觉界面比较清晰简约,比较喜欢. 二.下载完成之后大家可以自行注册登录,主页面的基本使用如下: ...
- vue tab实现右定位
呈现效果 利用v-if进行判断,登页面完全加载完毕后,显示tab页, 利用name标签,实现选择哪个tab <template> <el-tabs v-if="displa ...