最长递增子序列的个数

给定一个未排序的整数数组,找到最长递增子序列的个数。

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

思路:

思路
我们需要定义两个vector数组:

vector<int> dp(n,1): 表示以nums[i]结尾的LIS长度
vector<int> count(n,1): 表示以nums[i]结尾的LIS的组合的个数
这里两个数组全部初始化为1,显然当序列长度为1时,LIS的长度为1,并且所有LIS的个数至少为1(不可能为零)

两重循环遍历

第一重用i扫描(1 <= i < nums.size())
第二重用j扫描(0 <= j < i)
显然 j 永远小于 i

若要LIS成立,我们只要考虑nums[j] < nums[i]的情况,其他情况则不考虑

(1)当dp[j]+1 > dp[i]时,意味着我们第一次找到这个组合
(2)当dp[j]+1 == dp[i]时,意味着我们不是第一次找到这个组合

当我们遇到情况(1)时(dp[j]+1 > dp[i]),只需要将LIS的长度加一,并且将组合数设为与nums[j]一样即可

当我们遇到情况(2)时(dp[j]+1 == dp[i]),只需要将nums[j]的组合数添加上去即可

注意以上两种情况都是基于(nums[j] < nums[i])

最后我们返回所有LIS的所有组合数

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if(n<=0) return n;
vector<int> dp(n, 1);
vector<int> count(n,1); for(int i=1; i<n; i++) {
for(int j=0; j<i; j++) {
if(nums[j] < nums[i]) {
// 第一次找到
if(dp[j]+1 > dp[i]) {
dp[i] = dp[j] + 1;
count[i] = count[j];
// 再次找到
} else if(dp[j]+1 == dp[i]) {
count[i] += count[j];
}
}
}
}
// 最后的返回值应该是所有最大长度的所有count的总和
int max = *max_element(dp.begin(), dp.end());
int res = 0;
for(int i=0; i<n; i++) {
if(dp[i] == max)
res += count[i];
} return res; }
};

动态规划精讲(一)LC 最长递增子序列的个数的更多相关文章

  1. [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  2. Q673 最长递增子序列的个数

    给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7] ...

  3. Leetcode 673.最长递增子序列的个数

    最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[ ...

  4. Java实现 LeetCode 673 最长递增子序列的个数(递推)

    673. 最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, ...

  5. 51Nod:1134 最长递增子序列

    动态规划 修改隐藏话题 1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递 ...

  6. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  7. 【动态规划】拦截导弹_dilworth定理_最长递增子序列

    问题 K: [动态规划]拦截导弹 时间限制: 1 Sec  内存限制: 256 MB提交: 39  解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...

  8. 动态规划----最长递增子序列问题(LIS)

    题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...

  9. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

随机推荐

  1. 用传纸条讲 HTTPS

    我和小宇早恋了,上课的时候老说话. 老师把我们的座位分得很远,我在第一排,她在最后一排,我们中间隔了很多人. 但我们还是想通过传纸条的方式交流. 我们中间的那些同学,虽然坏心思比较多,但好在可以保证将 ...

  2. 深入理解jvm-2Edition-Java内存区域

    1.运行时数据区域 Java虚拟机会将内存区域划分为几个区域,每个区域储存不同类型的数据或承担不同的功能. PC,堆-Java堆,栈-虚拟机栈.本地方法栈,方法区.直接内存. 当类被实例化或stati ...

  3. Guava Cache 原理分析与最佳实践

    前言 目前大部分互联网架构 Cache 已经成为了必可不少的一环.常用的方案有大家熟知的 NoSQL 数据库(Redis.Memcached),也有大量的进程内缓存比如 EhCache .Guava ...

  4. SaToken学习笔记-02

    SaToken学习笔记-02 如果排版有问题,请点击:传送门 常用的登录有关的方法 - StpUtil.logout() 作用为:当前会话注销登录 调用此方法,其实做了哪些操作呢,我们来一起看一下源码 ...

  5. mybatis中Oracle及mysql插入时自动生成主键以及返回主键

    mysql的方式: 方式一: useGeneratedKeys="true" keyProperty="id" 方式二: <selectKey keyPr ...

  6. Linux命令(四)之常用文件拷贝/移动,文件解压缩,文件查找等相关的操作

    .personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...

  7. 【Openxml】将Openxml的椭圆弧线arcTo转为Svg的椭圆弧线

    本文将介绍如何将OpenXml的actTo转为Svg的弧线(a) OpenXml的artTo 首先下面是一段OpenXml的arcTo弧线 <arcTo wR="152403" ...

  8. Java全家桶的这些知识,不用学了

    众所周知,Java 的知识体系繁冗复杂,但是有很多知识在实际工作中几乎没有人用. 很多人在学习过程中,却经常把有限的时间和精力花在了这些"没有用"的知识上,事倍功半. 下面我捋一捋 ...

  9. C# 调用C++结构体

    参考网址:C#调用C/C++动态库,封装各种复杂结构体._liguo9860的专栏-CSDN博客 现在公司要做一个使用C#程序调用C++的一个DLL库,解析文件的功能.所以在网上找了一些资料.     ...

  10. vs2019编写c++的静态链接库并自己使用

    参考网址:https://blog.csdn.net/flame333/article/details/108346305 静态链接库1.新建一个静态库项目,其中有两个头文件,两个源文件 其中比较重要 ...