题目大意:

给你一个无向图\(G(V,E)\)。 每个顶点都有一个int范围内的整数的标记。 不同的顶点可能有相同的标记。

对于边\((u,v)\),我们定义\(Cost(u,v)=mark [u]\ \ xor\ \ mark [v]\)。

现在我们知道某些节点的标记了。你需要确定其他节点的标记,以使边的总成本尽可能小。

最后要求输出的每个点的标号

QwQ一看到这种跟位运算有关题目,就会想到按位来处理

仔细考虑,发现这个题满足最小割的模型,对于每一位,当时将所有点的对应位分成0,或者是1

那么,我们按位来,假设当前位是\(i\),对于已经知道编号的点\(x\),如果当前位是1的话,我们\(insert(s,x,inf)\),否则\(insert(x,t,inf)\)表示,这个点是0还是1,同时inf的原因是给定的点的编号的不能改的

同时对于原图的边\(u->v\),我们只需要\(insert(u,v,1),insert(v,u,1)\) 表示这两个点的当前位是否相同,最后跑\(dinic\),剩下的残余网络中,与s相连,且沿途流量\(>0\)的,就是1,否则就是0

大致就是这样,最后千万别忘记:

1.编号可能是0

2.初始化数组

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1010;
const int maxm = 200010;
const int inf = 1e9; int point[maxn],nxt[maxm],to[maxm],val[maxm];
int h[maxn];
int num[maxn];
int ans[maxn];
int x[maxm],y[maxm];
int n,m,cnt=1;
int s,t;
int vis[maxn];
queue<int> q; void addedge(int x,int y,int w){
nxt[++cnt]=point[x];
to[cnt]=y;
val[cnt]=w;
point[x]=cnt;
} void init()
{
cnt=1;
memset(point,0,sizeof(point));
memset(vis,0,sizeof(vis));
} void insert(int x,int y,int w)
{
addedge(x,y,w);
addedge(y,x,0);
} bool bfs(int s)
{
memset(h,-1,sizeof(h));
h[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (val[i]>0 && h[p]==-1)
{
h[p]=h[x]+1;
q.push(p);
}
}
}
if (h[t]==-1) return false;
else return true;
} int dfs(int x,int low)
{
if (x==t || low==0) return low;
int totflow=0;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (val[i]>0 && h[p]==h[x]+1)
{
int tmp = dfs(p,min(val[i],low));
val[i]-=tmp;
val[i^1]+=tmp;
low-=tmp;
totflow+=tmp;
if (low==0) return totflow;
}
}
if (low>0) h[x]=-1;
return totflow;
} int dinic(){
int ans=0;
while (bfs(s)){
ans+=dfs(s,inf);
}
} void dfs1(int x,int d)
{
vis[x]=1;
ans[x]|=(1 << d);
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (!vis[p] &&val[i]>0)
{
dfs1(p,d);
}
}
}
void build(int xx)
{
init();
s=n+10;
t=s+1;
for (int i=1;i<=n;i++)
{
if (num[i]!=-1)
{
if (num[i] & (1<<xx)) insert(s,i,inf);
else insert(i,t,inf);
}
}
for (int i=1;i<=m;i++)
{
insert(x[i],y[i],1);
insert(y[i],x[i],1);
}
dinic();
dfs1(s,xx);
} int T;
int main()
{
scanf("%d",&T);
while (T--)
{
memset(num,-1,sizeof(num));
memset(ans,0,sizeof(ans));
init();
n=read(),m=read();
for (int i=1;i<=m;i++) x[i]=read(),y[i]=read();
int k;
k=read();
for (int i=1;i<=k;i++)
{
int oo;
oo=read();
num[oo]=read();
}
for (int i=0;i<=32;i++)
{
build(i);
}
for (int i=1;i<=n;i++) printf("%d\n",ans[i]);
}
return 0;
}

spoj839 Optimal Marks(最小割,dinic)的更多相关文章

  1. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  2. [SPOJ839]Optimal Marks

    [SPOJ839]Optimal Marks 试题描述 You are given an undirected graph \(G(V, E)\). Each vertex has a mark wh ...

  3. SPOJ839 Optimal Marks(最小割)

    题目大概说给一张图,每个点都有权,边的权等于其两端点权的异或和,现已知几个点的权,为了使所有边的边权和最小,其他点的权值该是多少. 很有意思的一道题,完全看不出和网络流有什么关系. 考虑每个未知的点$ ...

  4. 【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS

    2400: Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 567  Solved: 202[Submit ...

  5. bzoj 3144 [Hnoi2013]切糕【最小割+dinic】

    都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...

  6. bzoj 2127 happiness【最小割+dinic】

    参考:https://www.cnblogs.com/chenyushuo/p/5144957.html 不得不说这个建图方法真是非常妙啊 假设S点选理,T点选文,a[i][j]为(i,j)选文收益, ...

  7. bzoj 2132 圈地计划【最小割+dinic】

    对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...

  8. bzoj 3894 文理分科【最小割+dinic】

    谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...

  9. [2019杭电多校第一场][hdu6582]Path(最短路&&最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6582 题意:删掉边使得1到n的最短路改变,删掉边的代价为该边的边权.求最小代价. 比赛时一片浆糊,赛后 ...

随机推荐

  1. 恶意软件开发——shellcode执行的几种常见方式

    一.什么是shellcode? shellcode是一小段代码,用于利用软件漏洞作为有效载荷.它之所以被称为"shellcode",是因为它通常启动一个命令shell,攻击者可以从 ...

  2. 前端性能优化(四)——网页加载更快的N种方式

    网站前端的用户体验,决定了用户是否想要继续使用网站以及网站的其他功能,网站的用户体验佳,可留住更多的用户.除此之外,前端优化得好,还可以为企业节约成本.那么我们应该如何对我们前端的页面进行性能优化呢? ...

  3. Win7安装 Mysql 5.7.22客户端

    根据自己的操作系统下载对应的32位或64位的压缩包: http://dev.mysql.com/downloads/mysql/ 官网下载 选择Windows对应的版本下载 不注册直接下载 安装步骤 ...

  4. JavaScript高级程序设计(读书笔记)之函数表达式

    定义函数的方式有两种:一种是函数声明,另一种就是函数表达式. 函数声明的一个重要特征就是函数声明提升(function declaration hoisting),意思是在执行代码前会先读取函数声明. ...

  5. JDK、JRE、JVM的基本介绍

    一 .Java三大版本 JavaSE 标准版(桌面程序.控制台开发-) JavaWE 嵌入式开发(手机.家电-) JavaEE 企业开发(web端.服务器开发-) 二.JDK.JRE.JVM区别 JD ...

  6. 一、部署sqlserver

    1.下载并挂载sqlserver镜像 2.填写秘钥:6GPYM-VHN83-PHDM2-Q9T2R-KBV83 3.默认下一步 4.勾选需要的功能 5.默认下一步 6.默认下一步 等待安装完成即可. ...

  7. WebService学习总结(六)--CXF 与Spring结合+tomcat发布

    该项目在上文   WebService学习总结(四)--基于CXF的服务端开发  的基础上修改为spring上发布的webservice接口 1.新建web project 工程 2.导入spring ...

  8. APT组织跟踪与溯源

    前言 在攻防演练中,高质量的蓝队报告往往需要溯源到攻击团队.国内黑产犯罪团伙.国外APT攻击. 红队现阶段对自己的信息保护的往往较好,根据以往溯源成功案例来看还是通过前端js获取用户ID信息.mysq ...

  9. Docker数据映射

    1.映射目录 docker run -v 2.映射文件 docker run -v

  10. NOIP模拟39:树

      他们说这题与之前树剖的一道叫染色的题类似,好像真的是这样.   就是我们考虑这样一件事,就是每一次染白都可以看作是给链上的点打一个时间戳,那么可以发现,如果相邻的两个点的时间戳不同,那么他们之间的 ...