Content

求给定 \(x,n\),求 \(f(x,n)=\sqrt{n+\sqrt{(n-1)+\sqrt{(n-2)+\sqrt{\dots+2+\sqrt{1+x}}}}}\) 的值。

Solution

乍一看这题目很烦人,其实,如果我们可以转换一下,这道题目就很简单。

我们不妨算下:

\[\begin{aligned}f(x,1)&=\sqrt{1+x}\\f(x,2)&=\sqrt{2+\sqrt{1+x}}=\sqrt{2+f(x,1)}\\f(x,3)&=\sqrt{3+\sqrt{2+\sqrt{1+x}}}=\sqrt{3+f(x,2)}=\sqrt{3+\sqrt{2+f(x,1)}}\\&\vdots\end{aligned}
\]

然后我们可以发现,\(f(x,n)\) 是一个层层包含的递归关系:如果 \(n=1\),那么 \(f(x,n)=\sqrt{1+x}\),否则,\(f(x,n)=\sqrt{n+f(x,n-1)}\),于是就这么样递归下去然后向上累加答案,足够通过本题。

然而,如果 \(n\) 的范围很大,递归的层数很多,我们如果还用递归的话就会内存爆炸,那么怎么办呢?我们考虑把它转为一个递推公式:

\[f_{x,n}=\begin{cases}\sqrt{1+x}&n=1\\\sqrt{n+f_{x,n-1}}&n>1\end{cases}
\]

然后你就可以明白了,这不就可以用数组直接循环递推出来就可以了吗?你可能发现了第一维的 \(x\),然后你注意到题目中 \(x\) 是个实数,那么就不能够以它作为数组的第一维,那么怎么办?我们又发现,\(n>1\) 时,\(f_{x,n}\) 只和 \(n\) 和 \(f_{x,n-1}\) 有关,并不和 \(x\) 有关。所以我们考虑直接将第一维省去,得到:

\[f_n=\begin{cases}\sqrt{1+x}&n=1\\\sqrt{n+f_{n-1}} &n>1\end{cases}
\]

然后你就可以用递推通过本题了。

Code

1 递归

#include <cstdio>
#include <cmath>
using namespace std; inline double f(double x, int n) {
if(n > 1) return sqrt(n + f(x, n - 1));
else return sqrt(1 + x);
} int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
return printf("%.2lf", f(x, n)), 0;
}

2 递推

#include <cstdio>
#include <cmath>
using namespace std; int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
double f[10007] = {0.0}; f[1] = sqrt(1 + x);
F(int, i, 2, n) f[i] = sqrt(i + f[i - 1]);
return printf("%.2lf", f[n]), 0;
}

LuoguB2147 求 f(x,n) 题解的更多相关文章

  1. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  2. ACM_求f(n)

    求f(n) Time Limit: 2000/1000ms (Java/Others) Problem Description: 设函数f(n)=1*1*1+2*2*2+3*3*3+...+n*n*n ...

  3. Codeforces Round #624 (Div. 3) F. Moving Points 题解

    第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...

  4. LuoguP5139 z小f的函数 题解

    Content 给定 \(T\) 个二次函数 \(y=ax^2+bx+c\),有若干次操作,有一个操作编号 \(p\),保证仅为以下这五种: 操作 \(1\):给定 \(k\),将函数图像向上移动 \ ...

  5. HDU X mod f(x)(题解注释)

    X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. 2018年第九届蓝桥杯【C++省赛B组】B、C、D、F、G 题解

    B. 明码 #STL 题意 把每个字节转为2进制表示,1表示墨迹,0表示底色.每行2个字节,一共16行,布局是: 第1字节,第2字节 第3字节,第4字节 .... 第31字节, 第32字节 给定一段由 ...

  7. F. Mattress Run 题解

    F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...

  8. 合肥学院ACM集训队第一届暑假友谊赛 B FYZ的求婚之旅 D 计算机科学家 F 智慧码 题解

    比赛网址:https://ac.nowcoder.com/acm/contest/994#question B FYZ的求婚之旅 思路: 然后用快速幂即可. 细节见代码: #include <i ...

  9. 一本通1166 求f(x,n)

    [题目描述] 已知 计算x=4.2,n=1以及x=2.5,n=15时f的值. [输入] 输入x和n. [输出] 函数值,保留两位小数. [输入样例] 4.2 10 [输出样例] 3.68 1.看见这种 ...

随机推荐

  1. MySQL 在线开启&关闭GTID模式

    MySQL 在线开启&关闭GTID模式 目录 MySQL 在线开启&关闭GTID模式 基本概述 在线开启GTID 1. 设置GTID校验ENFORCE_GTID_CONSISTENCY ...

  2. 最难忘的一次bug:谢谢实习时候爱学习的自己

    前言 时间的车轮一直向前不停,试图在时光洪流中碾碎一些久远的记忆.虽然记忆中的人离我越来越远,但是故事却越来越深刻. 当在博客园看到这次的正文题目是"最难忘的bug",脑海里瞬间浮 ...

  3. 卷积神经网络(Convolutional Neural Networks)CNN

     申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural ...

  4. 09 eclipse配置maven环境

    eclipse配置maven环境 一.打开eclipse:Window>>Preferences: 二.搜索:"maven",然后点击:"Installati ...

  5. academy

    academy at/in school都行,academy一般用at. The word comes from the Academy in ancient Greece, which derive ...

  6. Spark(十)【RDD的读取和保存】

    目录 一.文件类型 1.Text文件 2.Json文件 3.对象文件 4.Sequence文件 二.文件系统 1. MySQL 2. Hbase 一.文件类型 1.Text文件 读写 读取 scala ...

  7. Docker学习(六)——Dockerfile文件详解

    Docker学习(六)--Dockerfile文件详解 一.环境介绍 1.Dockerfile中所用的所有文件一定要和Dockerfile文件在同一级父目录下,可以为Dockerfile父目录的子目录 ...

  8. [学习总结]8、android 自定义控件 使用declare-styleable进行配置属性(源码角度)

    declare-styleable:declare-styleable是给自定义控件添加自定义属性用的. 官方的相关内部控件的配置属性文档:http://developer.android.com/r ...

  9. CentOS 初体验三: Yum 安装、卸载软件

    一:Yum 简介 Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指 ...

  10. Linux磁盘与文件系统原理

    这一章主要是原理性的,介绍了Linux文件系统的运作原理.涉及到很多计算机组成和操作系统的原理性知识,这部分知识很多都忘了,在这里复习下.    我们只看本章第1,2节.--------------- ...