LuoguB2147 求 f(x,n) 题解
Content
求给定 \(x,n\),求 \(f(x,n)=\sqrt{n+\sqrt{(n-1)+\sqrt{(n-2)+\sqrt{\dots+2+\sqrt{1+x}}}}}\) 的值。
Solution
乍一看这题目很烦人,其实,如果我们可以转换一下,这道题目就很简单。
我们不妨算下:
\]
然后我们可以发现,\(f(x,n)\) 是一个层层包含的递归关系:如果 \(n=1\),那么 \(f(x,n)=\sqrt{1+x}\),否则,\(f(x,n)=\sqrt{n+f(x,n-1)}\),于是就这么样递归下去然后向上累加答案,足够通过本题。
然而,如果 \(n\) 的范围很大,递归的层数很多,我们如果还用递归的话就会内存爆炸,那么怎么办呢?我们考虑把它转为一个递推公式:
\]
然后你就可以明白了,这不就可以用数组直接循环递推出来就可以了吗?你可能发现了第一维的 \(x\),然后你注意到题目中 \(x\) 是个实数,那么就不能够以它作为数组的第一维,那么怎么办?我们又发现,\(n>1\) 时,\(f_{x,n}\) 只和 \(n\) 和 \(f_{x,n-1}\) 有关,并不和 \(x\) 有关。所以我们考虑直接将第一维省去,得到:
\]
然后你就可以用递推通过本题了。
Code
1 递归
#include <cstdio>
#include <cmath>
using namespace std;
inline double f(double x, int n) {
if(n > 1) return sqrt(n + f(x, n - 1));
else return sqrt(1 + x);
}
int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
return printf("%.2lf", f(x, n)), 0;
}
2 递推
#include <cstdio>
#include <cmath>
using namespace std;
int main() {
double x; scanf("%lf", &x);
int n; scanf("%d", &n);
double f[10007] = {0.0}; f[1] = sqrt(1 + x);
F(int, i, 2, n) f[i] = sqrt(i + f[i - 1]);
return printf("%.2lf", f[n]), 0;
}
LuoguB2147 求 f(x,n) 题解的更多相关文章
- hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)
g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...
- ACM_求f(n)
求f(n) Time Limit: 2000/1000ms (Java/Others) Problem Description: 设函数f(n)=1*1*1+2*2*2+3*3*3+...+n*n*n ...
- Codeforces Round #624 (Div. 3) F. Moving Points 题解
第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...
- LuoguP5139 z小f的函数 题解
Content 给定 \(T\) 个二次函数 \(y=ax^2+bx+c\),有若干次操作,有一个操作编号 \(p\),保证仅为以下这五种: 操作 \(1\):给定 \(k\),将函数图像向上移动 \ ...
- HDU X mod f(x)(题解注释)
X mod f(x) Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 2018年第九届蓝桥杯【C++省赛B组】B、C、D、F、G 题解
B. 明码 #STL 题意 把每个字节转为2进制表示,1表示墨迹,0表示底色.每行2个字节,一共16行,布局是: 第1字节,第2字节 第3字节,第4字节 .... 第31字节, 第32字节 给定一段由 ...
- F. Mattress Run 题解
F. Mattress Run 挺好的一道题,对于DP的本质的理解有很大的帮助. 首先要想到的就是将这个拆成两个题,一个dp光求获得足够的夜晚的最小代价,一个dp光求获得足够的停留的最小代价. 显然由 ...
- 合肥学院ACM集训队第一届暑假友谊赛 B FYZ的求婚之旅 D 计算机科学家 F 智慧码 题解
比赛网址:https://ac.nowcoder.com/acm/contest/994#question B FYZ的求婚之旅 思路: 然后用快速幂即可. 细节见代码: #include <i ...
- 一本通1166 求f(x,n)
[题目描述] 已知 计算x=4.2,n=1以及x=2.5,n=15时f的值. [输入] 输入x和n. [输出] 函数值,保留两位小数. [输入样例] 4.2 10 [输出样例] 3.68 1.看见这种 ...
随机推荐
- 深入了解SpringMVC源码解析
Spring MVC源码解析 Spring MVC的使用原理其实是通过配置一个Servlet来接管所有的请求,所有的请求由这个Servlet来进行分发处理. 我们可以从web.xml里面看出这一点 & ...
- Hi3516开发笔记(五):通过HiTools使用网口将uboot、kernel、roofts和userdata按照分区表烧写镜像
前言 前面生成了uboot,kernel,sample,userdata(我们实际修改了ip的),rootfs,现在需要烧写进入核心板. 使用网口烧写镜像(海思烧写必须占用调试串口) 步骤一: ...
- 整理记录一些好用的随机图API
最近自己博客使用的随机图API有些不稳定,自己又去搜集了一些有意思的随机图API,这里做一个整理记录 注意!!!本文链接最后测试时间----2021年11月21日 主题作者Tagaki的API(有时候 ...
- 架构B/S和C/S的区别
CS = Client - Server = 客戶端 - 服務器.例子: QQ,迅雷,快播,暴風影音,各種網絡遊戲等等.只要有和服務器通訊的都算. CS(Client/Server):客户端----服 ...
- Go知识点大纲
目录 1. 基本介绍 2. 安装及配置 3. 变量 4. 常量 5. 数据类型 5.1 numeric(数字) 5.2 string(字符串) 5.3 array(数组) 5.4 slice(切片) ...
- Python文件复制shutil模块
Python中shutil模块主要用于文件操作,如复制,属性判断等 1.copyfileobj,拷贝文件内容,将文件句柄赋给该方法 def copyfileobj(src, dst, length=1 ...
- CSS区分Chrome和Firefox
CSS区分Chrome和FireFox 描述:由于Chrome和Firefox浏览器内核不同,对CSS解析有差别,因此常会有在两个浏览器中显示效果不同的问题出现,解决办法如下: /*Chrome*/ ...
- 虚拟节点轻松应对 LOL S11 百万并发流量——腾竞体育的弹性容器实践
作者 刘如梦,腾竞体育研发工程师,擅长高并发.微服务治理.DevOps,主要负责电竞服务平台架构设计和基础设施建设. 詹雪娇,腾讯云弹性容器服务EKS产品经理,主要负责 EKS 虚拟节点.容器实例相关 ...
- acquire, acre, across
acquire An acquired taste is an appreciation [鉴赏] for something unlikely to be enjoyed by a person w ...
- 如何让Linux 机器CPU使用率变高
如何让Linux 机器CPU使用率变高 一.实现 1.单行命令搞定 for i in `seq 1 $(cat /proc/cpuinfo |grep "physical id" ...