AT4995-[AGC034E] Complete Compress【树形dp】
正题
题目链接:https://www.luogu.com.cn/problem/AT4995
题目大意
\(n\)个点的一棵树,上面有一些棋子,每次可以选择两个棋子移动到他们之间的路径上相邻的点上,求最少多少步能移动到一个点上。
\(n\in[1,2000]\)
解题思路
如果固定最终节点的话,这个节点\(rt\)可行的话那么答案一定是\(\frac{\sum dis(rt,x)}{2}\)。
那么现在就转变为一个判定性问题,我们现在的操作变为了每次选择两个没有祖先关系的点,然后将它们往它们的\(LCA\)处移动一格。
同样的,我们发现如果我们在处理一个点\(x\)作为\(LCA\)时,我只会关心所有节点来自它的哪个儿子而不用考虑具体的位置。所以可以搞树形\(dp\)。
设\(f_x\)表示\(x\)的子树内最多的移动次数,定义\(s_x=\sum_{y\in subtree(x)}dis(x,y)\)的话,那么我们的转移和\(max\{s_y\}(x->y)\)有关。
若\(max\{s_y\}\times 2\leq s_x\),那么这里面的节点可以两两配对,\(f_x=\frac{s_x}{2}\)。
否则他\(s\)最大的子树\(y\)之中会有剩余的节点无法相互匹配,那么有$$f_x=s_x-s_y+min{f_y,s_y-\lfloor\frac{s_x}{2}\rfloor}$$
然后如果\(f_x=\frac{s_x}{2}\)那么\(x\)就是可行的答案
时间复杂度\(O(n^2)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2100;
struct node{
int to,next;
}a[N<<1];
int n,tot,ls[N],s[N],w[N],f[N],ans;
char v[N];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dp(int x,int fa){
s[x]=w[x]=0;
int mx=0,son=0;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==fa)continue;
dp(y,x);w[x]+=w[y];
s[x]+=s[y]+w[y];
if(s[y]+w[y]>mx)
mx=s[y]+w[y],son=y;
}
if(mx*2>s[x])
f[x]=s[x]-mx+min(f[son],mx-s[x]/2);
else f[x]=s[x]/2;
w[x]+=(v[x]=='1');
return;
}
int main()
{
scanf("%d",&n);
scanf("%s",v+1);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
ans=1e9;
for(int i=1;i<=n;i++){
dp(i,i);
if(s[i]&1)continue;
if(f[i]==s[i]/2)
ans=min(ans,f[i]);
}
if(ans==1e9)puts("-1");
else printf("%d\n",ans);
return 0;
}
AT4995-[AGC034E] Complete Compress【树形dp】的更多相关文章
- @atcoder - AGC034E@ Complete Compress
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点的树,编号为 1, 2, ..., N.第 i ...
- 「AGC034E」 Complete Compress
「AGC034E」 Complete Compress 显然可以枚举根. 然后把某两棵棋子同时往深度浅的方向提,即对不存在祖先关系的两个棋子进行操作. 如果能到达那么就更新答案. 问题转化为如何判定能 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
随机推荐
- Windows下NodeJS安装与npm环境变量配置
node.js下载:https://nodejs.org/en/download/ 参考:https://www.jianshu.com/p/812de13f1276 1.安装过程基本直接" ...
- C++ 矩形交集和并集的面积-离散化
//离散化,x,y坐标分别按从小到大排序 //离散化 //1.首先分离出所有的横坐标和纵坐标分别按升序存入数组X[ ]和Y[ ]中. //2. 设数组XY[ ][ ].对于每个矩形(x1,y1)(x2 ...
- [SWMM]软件启动不了,出现 “ RPC服务器不可用 ” 错误
[问题]打开SWMM5.1软件时,初选"RPC服务器不可用"的错误 [解决]计算机管理--服务 设置Print Spooler服务状态为启动,并设置为自启动.
- gradle依赖冲突
# 如何定位依赖冲突? 了解如何定位依赖冲突问题之前,我们先手动制造一个依赖冲突. 我们在 build.gradle 引入两个依赖库: compile 'org.hibernate:hibernate ...
- SpringBoot数据访问之整合mybatis注解版
SpringBoot数据访问之整合mybatis注解版 mybatis注解版: 贴心链接:Github 在网页下方,找到快速开始文档 上述链接方便读者查找. 通过快速开始文档,搭建环境: 创建数据库: ...
- CentOS7中apache的部署与配置
一.apache的部署 输入命令 yum list | grep httpd 查看可安装的软件包,选择"httpd.x86_64"安装. 输入命令 yum install http ...
- js函数和封装
$就是jquery对象,$()就是jQuery(),在里面可以传参数,作用就是获取元素 js对象与jQuery对象的区别:jQuery对象是一个数组,jQuery对象转为js对象:[0] 取第一个即可 ...
- 大天使之剑H5游戏超详细图文架设教程
引言 想体验传奇游戏霸服的快乐吗?想体验满级VIP的尊贵吗?想体验一刀99999的爽快吗?各种极品装备装备.翅膀.宠物通通给你,就在大天使之剑! 本文讲解大天使之剑H5游戏的架设教程,想研究H5游戏如 ...
- Tomcat集群Cluster实现原理
1.Tomcat集群 Tomcat集群的问题之一是如何处理Session,Session是有状态的,请求到了Tomcat,后续流传是要根据上下文(Context)来进行的.我们可以改造 ...
- VS Code 1.60 发布!竟然可以自动检测编程语言了!
北京时间 2021 年 9 月 3 日凌晨,微软正式发布 2021 年 8 月版的 Visual Studio Code.希望您会喜欢此版本中的许多更新与改进,以下是其中的一些亮点: * 自动语言检测 ...