正题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5909


题目大意

给出\(n\)和\(m\)(\(m=2^k\))。再给出一个大小为\(n\)的树,每个点有点权,对于每个\(i\in[1,m)\)求有多少个联通子图的点权异或和为\(i\)

\(1\leq T\leq 10,1\leq n\leq 1000,1\leq m\leq 2^{10}\)


解题思路

设\(f_{i,j}\)表示\(i\)的子树中包含\(i\)的联通子图里面,异或和为\(j\)的有多少个。那么转移方程就是

\[f_{x,i}=f_{x,i}+\sum_{j\ xor\ k=i}f_{y,j}\times f_{y,k}
\]

这个是裸的\(FWT\)形式,所以直接做就好了

时间复杂度\(O(n^2\log m)\)

比较老的题库了,输出格式限制是真的很严格


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1030,P=1e9+7,inv2=(P+1)/2;
struct node{
ll to,next;
}a[N<<1];
ll T,n,m,tot,ls[N],v[N];
ll f[N][N],ans[N];
void addl(ll x,ll y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void FWT(ll *f,ll op){
for(ll p=2;p<=m;p<<=1)
for(ll k=0,len=p>>1;k<m;k+=p)
for(ll i=k;i<k+len;i++){
ll x=f[i],y=f[i+len];
f[i]=(x+y)*op%P;
f[i+len]=(x-y)*op%P;
}
return;
}
void dfs(ll x,ll fa){
f[x][v[x]]=1;FWT(f[x],1);
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(y==fa)continue;
dfs(y,x);
for(ll j=0;j<m;j++)
f[x][j]=f[x][j]*f[y][j]%P;
}
FWT(f[x],inv2);
for(ll j=0;j<m;j++)
(ans[j]+=f[x][j])%=P;
f[x][0]++;FWT(f[x],1);
return;
}
signed main()
{
scanf("%lld",&T);
while(T--){
memset(ans,0,sizeof(ans));
memset(ls,0,sizeof(ls));
memset(f,0,sizeof(f));tot=0;
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)
scanf("%lld",&v[i]);
for(ll i=1;i<n;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
addl(x,y);addl(y,x);
}
dfs(1,1);
for(ll i=0;i<m;i++){
printf("%lld",(ans[i]%P+P)%P);
if(i!=m-1)putchar(' ');
}
putchar('\n');
}
return 0;
}

hdu5909-Tree Cutting【FWT】的更多相关文章

  1. hdu5909 Tree Cutting 【树形dp + FWT】

    题目链接 hdu5909 题解 设\(f[i][j]\)表示以\(i\)为根的子树,\(i\)一定取,剩余节点必须联通,异或和为\(j\)的方案数 初始化\(f[i][val[i]] = 1\) 枚举 ...

  2. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  3. HDU 5909 Tree Cutting(FWT+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题目大意] 给出一棵树,其每棵连通子树的价值为其点权的xor和, 问有多少连通子树的价值为 ...

  4. hdu5909 Tree Cutting

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题解] 设$f_{x,i}$表示以$x$节点的子树中,权值为$i$的子树个数,其中$x$必选. ...

  5. HDU5909 Tree Cutting(树形DP + FWT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...

  6. PAT甲级1135 Is It A Red-Black Tree?【dfs】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805346063728640 题意: 给定一棵二叉搜索树的先序遍历结 ...

  7. Extjs中创建Tree菜单【一】

    此篇treepanel的描写是很简单,没有太大的难度,在学习时,可以先熟悉tree的一些配置信息.属性.方法和事件. 然后先写一个简单的例子,慢慢了解从中如何实现的,然后在慢慢的深入了解,实现一些复杂 ...

  8. [dts]Device Tree机制【转】

    转自:https://www.cnblogs.com/aaronLinux/p/5496559.html 转自:http://blog.csdn.net/machiner1/article/detai ...

  9. LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】

    题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...

随机推荐

  1. 小白5分钟创建WPF

    创建WPF应用程序 基于生产这里选择.Net Framework进行开发 添加控件 由于不熟悉 高效点 我们这里直接拖拽控件 如果你有一点前端基础 你可以在控件对应Code 根据属性 对控件进行设置 ...

  2. C# 插件编写

    //加载插件 private void LoadPlugins() { string path = Path.Combine(Path.GetDirectoryName(Assembly.GetExe ...

  3. Linux第一个动态库

    动态库一般以.so结尾,就是shared object的意思. 其基本生成步骤为   ⑴编写函数代码   ⑵编译生成动态库文件,要加上 -shared 和 -fpic 选项 ,     库文件名以li ...

  4. 14.SpringMVC之文件上传下载

    SpringMVC通过MultipartResolver(多部件解析器)对象实现对文件上传的支持. MultipartResolver是一个接口对象,需要通过它的实现类CommonsMultipart ...

  5. Spring详解(九)------事务管理

    1.事务介绍 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit). 这里我们以取钱的例子来讲解:比如你去ATM ...

  6. MyBatis like报错

    错误的likeSQL语句是这么写的 select * from student name like '%#{name}%' 下面是错误信息 Parameter index out of range ( ...

  7. css - 样式 - 可见性

    visibility 可见性 取值:visible(可见) |  hidden(隐藏.保留占位) 设置给:块.行内块.行内元素 作用:设置元素在文档上的可见性 此属性只是隐藏元素,但会为元素保留占位. ...

  8. Linux c高级

    目录 一.Linux 1.1.嵌入式 1.2.什么是Linux 1.3.Linux发行版 1.4.Linux体系结构 1.5.虚拟4G内存 1.6.shell 命令 1.7.软件包的管理 1.8.图形 ...

  9. assign()与create()的区别

    Q:assign()与create()的区别? A:let obj = Object.assign(targetObj, -sourceObj) 作用:将一个或多个源对象自身的可枚举属性与目标对象的属 ...

  10. nginx 开启,关闭,重启

    2021-08-191. 启动 # 判断配置文件是否正确 cd /usr/local/nginx/sbin ./nginx -t # 启动 cd usr/local/nginx/sbin ./ngin ...