Part II 导数与微分

一元函数微分的定义

\(\lim \limits_{\triangle x \to 0} \frac{f(x_{0}+\triangle x)-f(x_{0})}{\triangle x} 记为{f}'(x_{0})\)

一元函数定义注意点

  1. 左右有别

    • \(\lim \limits_{\triangle x \to 0_{+}} \frac{f(x_{0}+\triangle x)-f(x_{0})}{\triangle x} = {f}'(x_{0}) 右导数\)
    • \(\lim \limits_{\triangle x \to 0_{-}} \frac{f(x_{0}+\triangle x)-f(x_{0})}{\triangle x} = {f}'(x_{0}) 左导数\)
    • \(因此{f}'(x_{0})存在\Leftrightarrow {f}'_{-}(x_{0}={f}'_{+}(x_{0})\)
  2. 广义化狗
    • \(\triangle x \rightarrow (广义化)狗\)
    • \(\lim \limits_{狗 \to 0} \frac{f(x_{0}+狗)-f(x_{0})}{狗}\)
  3. 一静一动
    • \(\lim \limits_{\triangle x \to 0} \frac{f(x_{0}+\triangle x)-f(x_{0}-\triangle x)}{2\triangle x}={f}'(x_{0})...就是典型错误\)
  4. 换元法
    • \(换元法,令x_{0}+\triangle x =x \Rightarrow \lim \limits_{ x \to x_{0}} \frac{f(x)-f(x_{0})}{x-x_{0}}={f}'(x_{0})\)

基本求导公式

  1. \({(x^a)}'=ax^{a-1}\)

  2. \({(a^x)}'=a^xlna\)

  3. \({(e^x)}'=e^x\)

  4. \({(lnx)}'=\frac{1}{x}\)

  5. \({(sinx)}'=cosx\)

  6. \({(cosx)}'=-sinx\)

  7. \({(tanx)}'=sec^2x\)

  8. \({(cotx)}'=-cscx^2x\)

  9. \({(secx)}'=-secxtanx\)

  10. \({(cscx)}'=-cscxcotx\)

  11. \({(arcsinx)}'=\frac{1}{\sqrt{1-x^2}}\)

  12. \({(arccosx)}'=-\frac{1}{\sqrt{1-x^2}}\)

  13. \({(arctanx)}'=\frac{1}{1+x^2}\)

  14. \({(arccotx)}'=-\frac{1}{1+x^2}\)

  15. \({(ln(x+\sqrt{x^2+1}))}'=\frac{1}{x^2+1}\)

  16. \({(ln(x+\sqrt{x^2-1}))}'=\frac{1}{x^2-1}\)

基本求导方法

复合函数求导、隐函数求导、对数求导法、反函数求导、参数方程求导

复合函数求导

复合函数一层层分层求导,幂指函数化为复合指数函数

隐函数求导

显函数:y=f(x),隐函数F(x,y)=0

方法:在F(x,y)=0两遍同时对x求导,只需注意y=y(x)即可(复合求导)

对数求导法

对多项目相乘、相除、开方乘方得来的式子,先取对数再求导,称为对数求导。

反函数求导

\(\frac{dy}{dx}={y}' \Rightarrow \frac{dx}{dy} = \frac{1}{{y}'}\)

参数方程求导

\(\begin{cases} {x=x(t)} &\\ {y=y(t)} \end{cases},t为参数\)

显函数

解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。

一个函数如果能用形如 的解析式表示,其中 分别是函数的自变量与因变量,则此函数称为显函数,如 等都是显函数。

隐函数

隐函数(implicit function)是由隐式方程所隐含定义的函数,比如\(y={\sqrt {1-x^{2}}}\)是由\(x^{2}+y^{2}-1=0\)确定的函数。而可以直接用含自变量的算式表示的函数称为显函数,也就是通常所说的函数,如\(y=\cos(x)\)。

[高数]高数部分-Part II 导数与微分的更多相关文章

  1. 高吞吐高并发Java NIO服务的架构(NIO架构及应用之一)

    高吞吐高并发Java NIO服务的架构(NIO架构及应用之一) http://maoyidao.iteye.com/blog/1149015   Java NIO成功的应用在了各种分布式.即时通信和中 ...

  2. HDU 4160 Dolls (最小路径覆盖=顶点数-最大匹配数)

    Dolls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  3. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  4. 由 12306.cn 谈谈高并发+高负载网站性能技术

    12306.cn 网站挂了,被全国人民骂了.我这两天也在思考这个事,我想以这个事来粗略地和大家讨论一下网站性能的问题.因为仓促,而且完全基于本人有限的经验和了解, 所以,如果有什么问题还请大家一起讨论 ...

  5. (转载)Catalan数——卡特兰数

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  6. 高并发&高可用系统的常见应对策略 秒杀等-(阿里)

    对于一个需要处理高并发的系统而言,可以从多个层面去解决这个问题. 1.数据库系统:数据库系统可以采取集群策略以保证某台数据库服务器的宕机不会影响整个系统,并且通过负载均衡策略来降低每一台数据库服务器的 ...

  7. PHP高并发高负载系统架构

    PHP高并发高负载系统架构 1.为什么要进行高并发和高负载的研究 1.1.产品发展的需要 1.2.公司发展的需要 1.3.当前形式决定的 2.高并发和高负载的约束条件 2.1.硬件 2.2.部署 2. ...

  8. 人人都可以开发高可用高伸缩应用——论Azure Service Fabric的意义

    今天推荐的文章其实是微软的一篇官方公告,宣布其即将发布的一个支撑高可用高伸缩云服务的框架--Azure Service Fabric. 前两天,微软Azure平台的CTO Mark Russinovi ...

  9. java处理高并发高负载类网站的优化方法

    java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF ...

随机推荐

  1. 零基础学习java------34---------登录案例,域,jsp(不太懂),查询商品列表案例(jstl标签)

    一. 简单登录案例 流程图: 项目结构图 前端代码: <!DOCTYPE html> <html> <head> <meta charset="UT ...

  2. Java虚拟机(JVM)以及跨平台原理

    相信大家已经了解到Java具有跨平台的特性,可以"一次编译,到处运行",在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C++很难做到的. 那么,跨平台 ...

  3. Oracle 表结构管理

    表其实是数据的'容器'.oracle有几种类型的表: 普通表(ordinary table)又叫堆组织表. 聚簇表(clustered table) 分区表(partition table) 外部表( ...

  4. 【Linux】【Shell】【text】Vim

    文本编辑器: 文本:纯文本,ASCII text:Unicode: 文本编辑种类: 行编辑器:sed 全屏编辑器:nano, vi vi: Visual Interface vim: Vi IMpro ...

  5. 【HarmonyOS】【多线程与并发】EventHandler

    EventHandler与EventRunner EventHandler相关概念 ● EventHandler是一种用户在当前线程上投递InnerEvent事件或者Runnable任务到异步线程上处 ...

  6. webapck搭建环境,让你知道vue中的h函数的作用和虚拟节点如何上树!

    搭建环境 npm init 初始化项目 npm i -D snabbdom 安装 npm i -D webpack@5 webpack-cli@3 webpack-dev-server@3 简单介绍 ...

  7. 一个超简单的Microsoft Edge Extension

    这个比微软官网上的例子简单很多,适合入门.总共4个文件: https://files.cnblogs.com/files/blogs/714801/cet6wordpicker.zip 36KB 1. ...

  8. Kerboros 认证

    转:Kerberos介绍(全)

  9. HGAME2021 week4 pwn writeup

    第四周只放出两道题,也不是很难. house_of_cosmos 没开pie,并且可以打got表. 在自写的输入函数存在漏洞.当a2==0时,因为时int类型,这里就会存在溢出.菜单题,但是没有输出功 ...

  10. Django中提示消息messages的设置

    1. 引入messages模块 1 from django.contrib import messages 2. 把messages写入view中 1 @csrf_exempt 2 def searc ...