Adversarial Self-Supervised Contrastive Learning
概
这篇文章提出了对比学习结合adversarial training的一个思路.
主要内容
对比学习的强大之处在于正负样本对的构造, 一个结合adversarial training的很自然的思路是, 将普通样本与其相对应的对抗样本作为一组正样本对. 令\(x \in \mathcal{X}\)为样本, \(t \in \mathcal{T}\)为一augmentation, 则\((x, t(x))\)便构成了一正样本对, 再假设有一组负样本\(\{x_{neg}\}\), 则
\]
其中\(z\)是经过标准化的特征, \(\tau\)是temperature. 很自然的, 我们可以通过上面的损失构造\(x\)的对抗样本\(x_{adv}\):
\]
稍有不同的是, 作者实际采用的是利用\(\mathcal{L}_{con}(t(x), t'(x), \{x_{neg}\})\)来构建对抗样本, 最后的用于训练的损失是
\mathcal{L}_{total}:= \mathcal{L}_{RoCL} + \lambda \mathcal{L}_{con}(t(x)^{adv},t'(x), \{t(x)_{neg}\}),
\]
多的项即希望对抗样本和其他样本区别开来.
注:
\]
Linear Part
因为自监督只是单纯提取了特征, 一般用于下游的分类任务需要再训练一个线性分类器, 很自然的, 作者选择在训练下游分类器的时候同样使用adversarial training:
\]
其中\(\psi\)为线性分类器\(l(\cdot)\)的的参数.
另外, 作者还融合的随机光滑的技巧, 即在估计的时候
\]
一般的随机光滑是对样本随机加噪声, 这里的随机光滑是随机选择augmentation, 这倒是很让人眼前一亮.
代码
Adversarial Self-Supervised Contrastive Learning的更多相关文章
- 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》
论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...
- Robust Pre-Training by Adversarial Contrastive Learning
目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive ...
- Feature Distillation With Guided Adversarial Contrastive Learning
目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...
- 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...
- ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(gCooL)《Graph Communal Contrastive Learning》
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...
- 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...
- 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》
1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...
随机推荐
- Go知识盲区--闭包
1. 引言 关于闭包的说明,曾在很多篇幅中都有过一些说明,包括Go基础--函数2, go 函数进阶,异常与错误 都有所提到, 但是会发现,好像原理(理论)都懂,但是就是不知道如何使用,或者在看到一些源 ...
- 简化版chmod
我们知道对文件访问权限的修改在Shell下可通过chmod来进行 例如 可以看到v.c文件从无权限到所有者可读可写可执行.群组和其他用户可读可执行 chmod函数原型 int chmod(const ...
- ps精修
1.磨皮方法: a,, 添加高斯模糊后,按住alt键新建图层蒙版,设置前景色为白色,用画笔在脸上雀斑的位置涂抹,注意脸轮廓位置不要涂抹.最后添加曲线提亮 b. 添加蒙尘和划痕后,后面上面的一样
- spring jdbc 配置数据源连接数据库
概述 在XML配置数据源,并将数据源注册到JDBC模板 JDBC模板关联业务增删改查 在XML配置数据源 <?xml version="1.0" encoding=" ...
- 超过三张表禁止join
一. 问题提出 <阿里巴巴JAVA开发手册>里面写超过三张表禁止join,这是为什么? 二.问题分析 对这个结论,你是否有怀疑呢?也不知道是哪位先哲说的不要人云亦云,今天我设计sql,来验 ...
- Spring Cloud中使用Eureka
一.创建00-eurekaserver-8000 (1)创建工程 创建一个Spring Initializr工程,命名为00-eurekaserver-8000,仅导入Eureka Server依赖即 ...
- lucene中创建索引库
package com.hope.lucene;import org.apache.commons.io.FileUtils;import org.apache.lucene.document.Doc ...
- spring boot springMVC扩展配置 。WebMvcConfigurer ,WebMvcConfigurerAdapter
摘要: 在spring boot中 MVC这部分也有默认自动配置,也就是说我们不用做任何配置,那么也是OK的,这个配置类就是 WebMvcAutoConfiguration,但是也时候我们想设置自己的 ...
- 关于tensorflow无法使用gpu
python3.6 无法使用tensorflow gpu 环境名称 test1 在控制台里进入环境 conda activate test1 使用python python 查看gpu能否使用 pri ...
- JS如何区分微信浏览器、QQ浏览器和QQ内置浏览器,解决 ios 无法判断是否为qq浏览器环境的问题 !!!
原理 通过不同移动端的ua弹窗 获取user-agent 参数包含的信息,进行判断浏览器类型 在Android上 QQ内置环境的ua中有关键字 MQQBrowser, 并且后面包含一个[空白符+QQ] ...