目录

Zhang H., Zhang Z., Odena A. and Lee H. CONSISTENCY REGULARIZATION FOR GENERATIVE ADVERSARIAL NETWORKS. ICLR, 2020.

Zhao Z., Singh S., Lee H., Zhang Z., Odena A. and Zhang H. Improved Consistency Regularization for GANs. AAAI, 2020.

让GAN训练稳定的方法主要有normalization 和 regularization.

这两篇文章介绍了 consistency regularization.

主要内容

如上图所示, \(T\)是augmentation,

CR-GAN的思路是, 希望\(D(T(x)), D(x)\)彼此接近,

bCR-GAN在此基础上, 还希望\(D(G(z)), D(T(G(z)))\)也彼此接近.

zCR-GAN则是将\(T\)直接作用在\(z\)上:

  1. \(G(z), G(T(z))\)彼此远离, 即增加多样性;
  2. \(D(G(z)), D(G(T(z)))\)彼此靠近, 即生成的图片应该有共同的主体特征.

至于ICR-GAN, 是bCR和zCR的结合.

注: 如果\(z\)是隐向量, \(T\)采取高斯噪声\(T(z) \sim \mathcal{N}(z, \sigma_{noise})\).

注: 远离和靠近的度量, 文中采用的是

\[\|\cdot \|^2.
\]

Consistency Regularization for GANs的更多相关文章

  1. 【半监督学习】MixMatch、UDA、ReMixMatch、FixMatch

    半监督学习(Semi-Supervised Learning,SSL)的 SOTA 一次次被 Google 刷新,从 MixMatch 开始,到同期的 UDA.ReMixMatch,再到 2020 年 ...

  2. Domain Adaptive Faster R-CNN:经典域自适应目标检测算法,解决现实中痛点,代码开源 | CVPR2018

    论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学 ...

  3. 旷世提出类别正则化的域自适应目标检测模型,缓解场景多样的痛点 | CVPR 2020

    论文基于DA Faster R-CNN系列提出类别正则化框架,充分利用多标签分类的弱定位能力以及图片级预测和实例级预测的类一致性,从实验结果来看,类该方法能够很好地提升DA Faster R-CNN系 ...

  4. Waymo object detect 2D解决方案论文拓展

    FixMatch 半监督中的基础论文,自监督和模型一致性的代表作. Consistency regularization: 无监督学习的方式,数据\(A\)和经过数据增强的\(A\)计做\(A'\) ...

  5. Semi-supervised semantic segmentation needs strong, varied perturbations

    论文阅读: Semi-supervised semantic segmentation needs strong, varied perturbations 作者声明 版权声明:本文为博主原创文章,遵 ...

  6. 论文笔记 - RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning

    Motivation 虽然半监督学习减少了大量数据标注的成本,但是对计算资源的要求依然很高(无论是在训练中还是超参搜索过程中),因此提出想法:由于计算量主要集中在大量未标注的数据上,能否从未标注的数据 ...

  7. (转)GANs and Divergence Minimization

    GANs and Divergence Minimization 2018-12-22 09:38:27     This blog is copied from: https://colinraff ...

  8. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  9. 数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑

    背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范 ...

随机推荐

  1. 巩固javaweb第十四天

    巩固内容: 单行文本框: 单行文本框的基本语法格式如下: < input type="text"  name="输入信息的字"  value=" ...

  2. day03 MySQL数据库之主键与外键

    day03 MySQL数据库之主键与外键 昨日内容回顾 针对库的基本SQL语句 # 增 create database meng; # 查 show databases; shwo create da ...

  3. REMI源安装php7.3

    参考:https://blog.csdn.net/Phplayers/article/details/100901352 php5.6安装参考:https://www.cnblogs.com/Easo ...

  4. Spark(十六)【SparkStreaming基本使用】

    目录 一. SparkStreaming简介 1. 相关术语 2. SparkStreaming概念 3. SparkStreaming架构 4. 背压机制 二. Dstream入门 1. WordC ...

  5. Scala(六)【模式匹配】

    目录 一.基本语法 二.匹配固定值 三.守卫 四.匹配类型 五.匹配集合 1.Array 2.List 3.元祖 4.对象和样例类 六.偏函数 七.赋值匹配 八.for循环匹配 一.基本语法 在匹配某 ...

  6. 【SpringBoot】几种定时任务的实现方式

    SpringBoot 几种定时任务的实现方式 Wan QingHua 架构之路  定时任务实现的几种方式: Timer:这是java自带的java.util.Timer类,这个类允许你调度一个java ...

  7. 深入 char

    深入 char * ,char ** ,char a[ ] ,char *a[] 内核分类: c语言 2013-02-23 15:34 15176人阅读 评论(8) 收藏 举报Charcharchar ...

  8. Java中的循环结构(二)

    循环结构(二) 学习本章有道的单词: rate:速度,比率 young:年轻的,年少 schedule:时间表,调度 neggtive:消极的;否定 customer:顾客,观众 birthday:生 ...

  9. Spring5 AOP编程:关于org.springframework.beans.factory.BeanNotOfRequiredTypeException报错

    Spring5 AOP编程:关于org.springframework.beans.factory.BeanNotOfRequiredTypeException报错 先上错误详细信息: org.spr ...

  10. CF24B F1 Champions 题解

    Content 有 \(n\) 场已经进行完的赛车比赛,每场比赛给出前 \(m\) 名的名字.在每场比赛中,前 \(10\) 名的选手分别可以获得 \(25,18,15,12,10,8,6,4,2,1 ...