Wang J, Chen Y, Chakraborty R, et al. Orthogonal Convolutional Neural Networks.[J]. arXiv: Computer Vision and Pattern Recognition, 2019.

@article{wang2019orthogonal,

title={Orthogonal Convolutional Neural Networks.},

author={Wang, Jiayun and Chen, Yubei and Chakraborty, Rudrasis and Yu, Stella X},

journal={arXiv: Computer Vision and Pattern Recognition},

year={2019}}

本文提出了一种正交化CNN的方法.

主要内容

符号说明

\(X \in \mathbb{R}^{N \times C \times H \times W}\): 输入

\(K \in \mathbb{R}^{M \times C \times k \times k}\): 卷积核

\(Y \in \mathbb{R}^{N \times M \times H' \times W'}\): 输出

\[Y= Conv(K,X)
\]

\(Y=Conv(K,X)\)的俩种表示



\(Y=K\tilde{X}\)

此时\(K\in \mathbb{R}^{M \times Ck^2}\), 每一行相当于一个卷积核, \(\tilde{X} \in \mathbb{R}^{Ck^2 \times H'W'}\), \(Y \in \mathbb{R}^{M \times H'W'}\).

\(Y=\mathcal{K}X\)

此时\(X \in \mathbb{R}^{CHW}\)相当于将一张图片拉成条, \(\mathcal{K} \in \mathbb{R}^{MHW' \times CHW}\), 同样每一次行列作内积相当于一次卷积操作, \(Y \in \mathbb{R}^{MH'W'}\).

kernel orthogonal regularization

相当于要求\(KK^T=I\)(行正交) 或者\(K^TK=I\)(列正交), 正则项为

\[L_{korth-row}= \|KK^T-I\|_F,\\
L_{korth-col}= \|K^TK-I\|_F.
\]

作者在最新的论文版本中说明了, 这二者是等价的.

orthogonal convolution

作者期望的便是\(\mathcal{K}\mathcal{K}^T=I\)或者\(\mathcal{K}^T\mathcal{K}=I\).

用\(\mathcal{K}(ihw,\cdot)\)表示第\((i-1) H'W'+(h-1)W'+w\)行, 对应的\(\mathcal{K}(\cdot, ihw)\)表示\((i-1) HW+(h-1)W+w\)列.

则\(\mathcal{K}\mathcal{K}^T=I\)等价于

\[\tag{5}
\langle \mathcal{K}(ih_1w_1, \cdot), \mathcal{K}(jh_2w_2,\cdot)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

\(\mathcal{K}^T\mathcal{K}=I\)等价于

\[\tag{10}
\langle \mathcal{K}(\cdot, ih_1w_1), \mathcal{K}(\cdot, jh_2w_2)\rangle =
\left \{
\begin{array}{ll}
1, & (i,h_1,w_1)=(j,h_2,w_2) \\
0, & else.
\end{array} \right.
\]

实际上这么作是由很多冗余的, 可以进一步化为更简单的形式.

(5)等价于

\[\tag{7}
Conv(K, K,padding=P, stride=S)=I_{r0},
\]

其中\(I_{r0}\in \mathbb{R}^{M\times M \times (2P/S+1) \times (2P/S+1)}\)仅在\([i,i,\lfloor \frac{k-1}{S} \rfloor+1,\lfloor \frac{k-1}{S} \rfloor+1], i=1,\ldots, M\)处为\(1\)其余元素均为\(0\).

\[P= \lfloor \frac{k-1}{S} \rfloor \cdot S.
\]

其推导过程如下(这个实在不好写清楚):

\(\mathcal{K}^T\mathcal{K}\)在\(S=1\)特殊情况下的特殊情况下, (10)等价于

\[\tag{11}
Conv (K^T,K^T, padding=k-1, stride=1)=I_{c0},
\]

其中\(I_{c0} \in \mathbb{R}^{C \times C \times (2k-1) \times (2k-1)}\), 同样仅在\((i,i,k,k)\)处为1, 其余非零.\(K^T \in \mathbb{R}^{C \times M \times k \times k}\)是\(K\)的第1, 2坐标轴进行变换.



同样的

\[\min_K \|\mathcal{K}\mathcal{K}^T-I\|_F
\]

\[\min_K \|\mathcal{K}^T\mathcal{K}-I\|_F
\]

是等价的.

另一方面, 最开始提到的kernel orthogonal regularization是orthogonal convolution的必要条件(但不充分)\(KK^T=I\), \(K^TK=I\)分别等价于:

\[Conv(K,K,padding=0)=I_{r0} \\
Conv(K^T, K^T, padding=0)=I_{c_0},
\]

其中\(I_{r0} \in \mathbb{R}^{M \times M \times 1 \times 1}\), \(I_{c0} \in \mathbb{R}^{C \times C \times 1 \times 1}\).

Orthogonal Convolutional Neural Networks的更多相关文章

  1. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  2. Notes on Convolutional Neural Networks

    这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正, ...

  3. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  4. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. 阅读笔记 The Impact of Imbalanced Training Data for Convolutional Neural Networks [DegreeProject2015] 数据分析型

    The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David M ...

  7. 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

    本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classificati ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

随机推荐

  1. Hadoop的HA机制浅析

    Zookeeper在Hadoop的HA中的应用 非HA的弊端: HDFS集群的分布式存储是靠namenode节点(namenode负责响应客户端请求)来实现.在非HA集群中一旦namenode宕机,虽 ...

  2. haproxy动态增减主机与keepalived高级应用

    一:本文将详细介绍haproxy的配置使用以及高级功能的使用,比如通过haproxy进行动态添加删除负载集群中的后端web服务器的指定主机,另外将详细介绍keepalived的详细配置方法.配置实例及 ...

  3. 隐藏状态栏后tableview自动上移20个像素的问题

    最近在开发过程中碰到一个很奇怪的问题,将状态栏隐藏掉之后,页面上的tableView会自动上移20个像素. 这是因为在iOS7.0之后,系统会自动调整scrollView的layout 和 conte ...

  4. 软件测试人员必备的linux命令

    1 目录与文件操作1.1 ls(初级)使用权限:所有人功能 : 显示指定工作目录下之内容(列出目前工作目录所含之档案及子目录). 参数 : -a 显示所有档案及目录 (ls内定将档案名或目录名称开头为 ...

  5. css实现项目中的加载动画

    // =========================================第一个动画 <template> <!-- 这个组件用于 页面下滑到底部时 展示加载动画 -- ...

  6. springmvc资源文件访问不到,undefined,jsp引用js文件目录

    资源访问失败: 该模块下springmvc.xml文件中添加配置: <mvc:resources mapping="/js/**" location="/js/&q ...

  7. hibernate多对多单向(双向)关系映射

    n-n(多对多)的关联关系必须通过连接表实现.下面以商品种类和商品之间的关系,即一个商品种类下面可以有多种商品,一种商品又可以属于多个商品种类,分别介绍单向的n-n关联关系和双向的n-n关联关系. 单 ...

  8. [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器

    [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 目录 [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 0x0 ...

  9. [BUUCTF]PWN——wustctf2020_closed

    wustctf2020_closed 附件 步骤: 例行检查,64位程序,开启了nx保护 本地试运行一下看看大概的情况 64位ida载入,首先是检索程序里的字符串,找到了后门 main函数里的关键函数 ...

  10. 筛选(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 [视图]选项卡下有个[筛选器],筛选功能就在里面实现. 比如按[里程碑]筛选. 按[日期范围],再指定个起始日期和结束日期 ...