【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4503

【题目大意】

  给出S串和T串,计算T在S中出现次数,T中有通配符'?'。

【题解】

  我们定义f[x]=sum_{i=0}^{n-1}|s1[i]-s2[i]|,当f[x]=0时,两个字符串相等。因为考虑到这里还有适配符,所以用f[x]=sum_{i=0}^{n-1}(s1[i]-s2[i])*(s1[i]-s2[i])*s1[i]*s2[i]来表示匹配函数。我们可以发现,如果将一个串倒置,那么这就是一个卷积的式子。因此我们将多项式展开,将得到的相加的三段式子,做三次FFT,将结果汇总,然后统计即可。

【代码】

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1048600;
int n,pos[N];
namespace FFT{
struct comp{
double r,i;
comp(double _r=0,double _i=0):r(_r),i(_i){}
comp operator +(const comp&x){return comp(r+x.r,i+x.i);}
comp operator -(const comp&x){return comp(r-x.r,i-x.i);}
comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);}
comp conj(){return comp(r,-i);}
}A[N],B[N];
const double pi=acos(-1.0);
void FFT(comp a[],int n,int t){
for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]);
for(int d=0;(1<<d)<n;d++){
int m=1<<d,m2=m<<1;
double o=pi*2/m2*t;
comp _w(cos(o),sin(o));
for(int i=0;i<n;i+=m2){
comp w(1,0);
for(int j=0;j<m;j++){
comp& A=a[i+j+m],&B=a[i+j],t=w*A;
A=B-t;B=B+t;w=w*_w;
}
}
}if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
}
}
int l1,l2,ans[N],cnt=0,a[N],b[N];
FFT::comp A[N],B[N],C[N];
char s1[N],s2[N];
int main(){
scanf(" %s %s",&s1,&s2);
l1=strlen(s1); l2=strlen(s2);
for(int i=0;i<l1;i++)a[i]=s1[i]-'a'+1;
for(int i=0;i<l2;i++)b[l2-1-i]=s2[i]=='?'?0:s2[i]-'a'+1;
int N=1; while(N<l1+l2)N<<=1;
int j=__builtin_ctz(N)-1;
for(int i=0;i<N;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);}
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i]*a[i],0),B[i]=FFT::comp(b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i],0),B[i]=FFT::comp(b[i]*b[i]*b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i],0),B[i]=FFT::comp(b[i]*b[i],0);
FFT::FFT(A,N,1);FFT::FFT(B,N,1);
for(int i=0;i<N;i++)C[i]=C[i]-A[i]*B[i]*FFT::comp(2,0);
FFT::FFT(C,N,-1);
for(int i=l2-1;i<l1;i++){
if(C[i].r<0.5)ans[cnt++]=i-l2+1;
}printf("%d\n",cnt);
for(int i=0;i<cnt;i++)printf("%d\n",ans[i]);
return 0;
}

  

BZOJ 4503 两个串(FFT)的更多相关文章

  1. BZOJ 4503: 两个串 [FFT]

    4503: 两个串 题意:兔子们在玩两个串的游戏.给定两个只含小写字母的字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹 ...

  2. BZOJ.4503.两个串(FFT/bitset)

    题目链接 \(Description\) 给定两个字符串S和T,求T在S中出现了几次,以及分别在哪些位置出现.T中可能有'?'字符,这个字符可以匹配任何字符. \(|S|,|T|\leq 10^5\) ...

  3. bzoj 4503 两个串——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 翻转T,就变成卷积.要想想怎么判断. 因为卷积是乘积求和,又想到相等的话相减为0,所以 ...

  4. bzoj 4503 两个串 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 推式子即可: 不知怎的调了那么久,应该是很清晰的. 代码如下: #include< ...

  5. BZOJ 4503 两个串 ——FFT

    [题目分析] 定义两个字符之间的距离为 (ai-bi)^2*ai*bi 如果能够匹配,从i到i+m的位置的和一定为0 但这和暴力没有什么区别. 发现把b字符串反过来就可以卷积用FFT了. 听说KMP+ ...

  6. bzoj 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...

  7. 【刷题】BZOJ 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹配任何字符. I ...

  8. bzoj 4503 两个串 快速傅里叶变换FFT

    题目大意: 给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次.并且第二个串中含有单字符通配符. 题解: 首先我们从kmp的角度去考虑 这道题从字符串数据 ...

  9. bzoj 4503: 两个串【脑洞+FFT】

    真实脑洞题 因为通配符所以导致t串实际有指数级别个,任何字符串相关算法都没有用 考虑一个新的匹配方法:设a串(模板串)长为n,从m串的i位置开始匹配:\( \sum_{i=0}^{n-1}(a[j]- ...

随机推荐

  1. 我定制的jquery ui主题

    打开网址 http://jqueryui.com/themeroller/,找到Gallery找到Redmond点击edit 将圆角设置成3px,让圆角更低调:将下面的每个Background的背景图 ...

  2. 学习笔记(一) HTML+CSS基础课程

    这个周把慕课网的<HTML+CSS基础课程>课程学完,内容都是非常非常基础的,不过还是学到了几个小知识点,记下来先. <a>超链接发送邮件 直接上把他的图片给挪过来了,我就不打 ...

  3. JS输出日历

    页面HTML代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> &l ...

  4. OS X EI Capitan 10.11.1快速升级方法介绍

    公告:本文纯粹是给国内小水管用户而写的,如果你们家网络是100M光线那么就不需要看本文了! 一句话概要本文:在本地山寨从App store服务器上下载安装包的动作! 导读:OS X EI Capita ...

  5. ICON图标文件解析

    icon是一种图标格式,用于系统图标.软件图标等,这种图标扩展名为*.icon.*.ico.常见的软件或windows桌面上的那些图标一般都是ICON格式的. ICON文件格式比较简单,包含文件头段. ...

  6. java学习之多线程

    进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础. 线程(Lightweight Process,LWP)是程序中一个单一 ...

  7. oracle字符集查看修改

    一.什么是Oracle字符集 Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库 ...

  8. ZOJ 3794 Greedy Driver spfa

    题意: 给定n个点,m条有向边,邮箱容量. 起点在1,终点在n,開始邮箱满油. 以下m行表示起点终点和这条边的耗油量(就是长度) 再以下给出一个数字m表示有P个加油站,能够免费加满油. 以下一行P个数 ...

  9. Struts2复习(四)防止表单反复提交

    1.採取请求转发的方式完毕表单内容的加入会造成内容的反复插入. 2.採取重定向的方式实现数据的加入不会导致数据的反复插入. 3.防止表单反复提交的两种方式 1)  通过重定向  2)  通过Sessi ...

  10. ceph 块设备

    数据的存储设备? 数据的存储有3种形式,1种是直接以二进制数据的形式存储在裸设备(包括块设备)上,另外一种是以文件的形式经过文件系统管理进行存储.第三种就是以对象的形式进行对象存储.本篇讨论围绕着块设 ...