Problem C.Storage Keepers 

Background

Randy Company has N (1<=N<=100) storages. Company wants some men to keep them safe. Now there are M (1<=M<=30) men asking for the job. Company will choose several from them. Randy Company employs men following these rules:

1.       Each keeper has a number Pi (1<=Pi<=1000) , which stands for their ability.

2.       All storages are the same as each other.

3.       A storage can only be lookd after by one keeper. But a keeper can look after several storages. If a keeper’s ability number is Pi, and he looks after K storages, each storage that he looks after has a safe number Uj=Pi div K.(Note: Uj, Pi and K are all integers). The storage which is looked after by nobody will get a number 0.

4.       If all the storages is at least given to a man, company will get a safe line L=min Uj

5.       Every month Randy Company will give each employed keeper a wage according to his ability number. That means, if a keeper’s ability number is Pi, he will get Pi dollars every month. The total money company will pay the keepers every month is Y dollars.

Now Randy Company gives you a list that contains all information about N,M,P, your task is give company a best choice of the keepers to make the company pay the least money under the condition that the safe line L is the highest.

Input

The input file contains several scenarios. Each of them consists of 2 lines:

The first line consists of two numbers (N and M), the second line consists of M numbers, meaning Pi (I=1..M). There is only one space between two border numbers.

The input file is ended with N=0 and M=0.

Output

For each scenario, print a line containing two numbers L(max) and Y(min). There should be a space between them.

Sample Input

2 1

7

1 2

10 9

2 5

10 8 6 4 1

5 4

1 1 1 1

0 0

Sample Output

3 7

10 10

8 18

0 0

题意:有m个仓库, n个小伙伴,每个小伙伴有个能力值p,要这些小伙伴去守护仓库,每个小伙伴的雇佣金是p,每个小伙伴看守的仓库安全值为p/k(每个小伙伴看守仓库数)。仓库的安全值为所有仓库中,安全值最小的仓库的安全值。

要求出最大安全值和最大安全值下的最小开销。

思路: 背包, 首先是第一个问题,我们把每个小伙伴看成物品,要看守的仓库数看成背包容量,每个小伙伴看守的仓库数为k,价值为p[i]/k。 状态转移方程为dp[j] = max(dp[j], min(dp[j - k], p[i]/k).。

然后是第二个问题。在第一个问题求出的最大安全值maxx下,求最小价值,依然是背包,k表示每个小伙伴看守的仓库数,状态转移方程为dp[j] = min(dp[j], dp[j - k] + p[i]);

代码:

#include <stdio.h>
#include <string.h> const int INF = 1 << 30;
int n, m, p[105], i, j, k, dp[1005], maxx, minn; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} int main() {
while (~scanf("%d%d", &m, &n) && m || n) {
memset(dp, 0, sizeof(dp));
dp[0] = INF;
for (i = 0; i < n; i ++)
scanf("%d", &p[i]);
for (i = 0; i < n; i ++) {
for (j = m; j >= 0; j --) {
for (k = 1; k <= p[i] && k <= j; k ++) {
dp[j] = max(dp[j], min(dp[j - k], p[i] / k));
}
}
}
maxx = dp[m];
if (maxx == 0) {
printf("0 0\n");
continue;
}
for (i = 1; i <= m; i ++)
dp[i] = INF;
dp[0] = 0;
for (i = 0; i < n; i ++)
for (j = m; j >= 0; j --)
for (k = min(j, p[i]/maxx); k > 0; k --) {
dp[j] = min(dp[j], dp[j - k] + p[i]);
}
printf("%d %d\n", maxx, dp[m]);
}
return 0;
}

UVA 10163 Storage Keepers(dp + 背包)的更多相关文章

  1. uva 10163 - Storage Keepers(01背包)

    题目链接:10163 - Storage Keepers 题目大意:给出m为仓库的数量, 给出n为有守夜人的数量, 然后给出n个数值,为对应守夜人应付的酬劳,每个守夜人的能力与他需要的酬劳是相等的,并 ...

  2. UVA 10163 Storage Keepers(两次DP)

    UVA 10163 Storage Keepers(两次DP) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Ite ...

  3. DP(两次) UVA 10163 Storage Keepers

    题目传送门 /* 题意:(我懒得写,照搬网上的)有n个仓库,m个人看管.一个仓库只能由一个人来看管,一个人可以看管多个仓库. 每个人有一个能力值pi,如果他看管k个仓库,那么所看管的每个仓库的安全值为 ...

  4. UVa 10163 Storage Keepers (二分 + DP)

    题意:有n个仓库,m个管理员,每个管理员有一个能力值P,每个仓库只能由一个管理员看管,但是每个管理员可以看管k个仓库(但是这个仓库分配到的安全值只有p/k,k=0,1,...),雇用的管理员的工资即为 ...

  5. UVA 10163 - Storage Keepers(dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: 点击打开链接 题意 有n个仓库,让m个人来看管.一个仓库只能由一个人来看管,一个人可以看管多个仓库. 每个人 ...

  6. uva 10163 Storage Keepers

    题意: 有n个仓库,m个人,一个仓库只能由一个人托管,每个人可以托管多个仓库. 每个人有一个能力值a,如果说他托管了k个仓库,那么这些仓库的安全值都是a/k. 雇佣一个人的花费也是a. 如果一个仓库没 ...

  7. UVA-10163 Storage Keepers (0-1背包)

    题目大意:有n个仓库,m个应聘者,每人对应一个能力值.一个人可以看多个仓库,一间仓库只能被一个人看.如果一个能力为p的人看k间仓库,那么安全系数为p/k,求出最大的最小安全系数,并且求出在此情况下所有 ...

  8. UVA-10163 Storage Keepers DP

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  9. UVA 10163 十六 Storage Keepers

    十六 Storage Keepers Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

随机推荐

  1. apache端口被占用

      1.80端口被占用,先去服务里将IIS关闭掉,然后重启apache,如果还是继续弹窗the requested operation has failed...需要去Internet信息服务里面停止 ...

  2. public void Delete<T>(List<T> EntityList) where T : class, new() 这是什么意思

    就是说T必须是一个类(class)类型,不能是结构(structure)类型. 这是类型参数约束,.NET支持的类型参数约束有以下五种: where T : struct                ...

  3. 关于 HTML5 的 11 个让人难以接受的事实

    HTML5为Web开发者提供了很多强大的新特性,但是它的一些特定的限制会让它无法和本地应用匹敌. HTML5整合进了很多新的特性,并且有可能提升Web编程模式.和每一个阅读技术资讯的人所知道的一样,没 ...

  4. 【C++学习笔记1】

    几个比较容易忘记的东西....... 移动构造函数: Vector(Vector &&copy) //移动构造函数 { if(copy.A!=NULL) { A=copy.A; cop ...

  5. 读书笔记一 Java程序员的基本修养(数组及其内存管理)

    1.1 数组初始化 1.1.1 java数组是静态的 java数组被初始化之后,该数组所占的内存空间.数组长度都是不可变的. java程序中的数组必须经过初始化才可使用. 数组的初始化有两种方式: 1 ...

  6. SQL Server中调用WebService的实例

    尊重原著作:本文转载自http://www.cnblogs.com/icycore/p/3532197.html 1.Ole Automation Procedures 服务器配置选项 当启用 OLE ...

  7. Oracle使用imp/exop远程导入导出dmp数据

    在导入导出数据之前,习惯性的检查一下,看看我们自己的机器可不可以连接远程的Oracle主机,检测方法是tnsping SERVICE_NAME.我的机器如下: C:\Users\zx>tnspi ...

  8. Ubuntu 13.10 下安装node

    1.首先更新Ubuntu在线包:sudo apt-get update && sudo apt-get dist-upgrade, 2.默认Ubuntu已经安装python的,具体版本 ...

  9. Your build settings specify a provisioning profile with the UUID, no such provisioning profile was found的解决方案

    在Archive项目时,出现了“Your build settings specify a provisioning profile with the UUID “”, however, no suc ...

  10. iOS中有关配置 Apache 服务器的详细步骤

    配置 Apache 服务器 目的: 能够有一个测试的服务器,Apache 服务器是免费的! 为什么是 Apache 使用最广的 Web 服务器 Mac自带,只需要修改几个配置就可以,简单,快捷 有些特 ...