POJ 2635 The Embarrassed Cryptographer 高精度
题目地址: http://poj.org/problem?id=2635
题意:给出一个n和L,一直n一定可以分解成两个素数相乘。
让你判断,如果这两个素数都大于等于L,则输出GOOD,否则输出最小的那个素数。
从1到1000000的素数求出来,然后一个一个枚举到L,看能否被n整除,能的话就输出BAD+改素数
都不行的话,说明两个素数都大于等于L,输出GOOD
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std; typedef long long LL;
const int N=1000005;
const LL II=100000000;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0); LL pri[N/100];
bool num[N];
int xx;
char s[105];
LL x[100]; void prime()
{
LL i,j;
int k=0;
memset(num,0,sizeof(num));
for(i=2;i<N;i++)
{
if(!num[i])
{
pri[++k]=i;
for(j=i;j<N;j+=i)
num[j]=1;
}
}
xx=k;
} void toint(char *s,LL *t,int &k)
{
int len=strlen(s),j;
char x[10]={0};
k=0;
for(;len/8;len-=8)
{
strncpy(x,s+len-8,8);
LL sum=0;
for(j=0;j<8;j++)
sum=sum*10+x[j]-'0';
t[k++]=sum;
}
if(len)
{
strncpy(x,s,len);
LL sum=0;
for(j=0;j<len;j++)
sum=sum*10+x[j]-'0';
t[k++]=sum;
}
} bool modd(LL p,int len)
{
int i;
LL xh=0;
for(i=len-1;i>=0;i--)
xh=(xh*II+x[i])%p;
if(xh==0)
return true;
return false;
} int main()
{
int i,j,L;
prime();
while(scanf("%s%d",s,&L))
{
if(strcmp(s,"0")==0&&L==0)
break;
int len;
toint(s,x,len);
int p=1,flag=0;
while(pri[p]<L)
{
if(modd(pri[p],len))
{
flag=1;
printf("BAD %lld\n",pri[p]);
break;
}
p++;
}
if(flag==0)
printf("GOOD\n");
}
return 0;
}
POJ 2635 The Embarrassed Cryptographer 高精度的更多相关文章
- POJ 2635 The Embarrassed Cryptographer
大数取MOD... The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1 ...
- [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11978 A ...
- POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)
The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15767 A ...
- poj 2635 The Embarrassed Cryptographer(数论)
题目:http://poj.org/problem?id=2635 高精度求模 同余模定理. 题意: 给定一个大数K,K是两个大素数的乘积的值.再给定一个int内的数L 问这两个大素数中最小的一个是 ...
- POJ 2635 The Embarrassed Cryptographer 大数模
题目: http://poj.org/problem?id=2635 利用同余模定理大数拆分取模,但是耗时,需要转化为高进制,这样位数少,循环少,这里转化为1000进制的,如果转化为10000进制,需 ...
- POJ - 2635 The Embarrassed Cryptographer(千进制+同余模)
http://poj.org/problem?id=2635 题意 给一个大数K,K一定为两个素数的乘积.现给出一个L,若K的两个因子有小于L的,就输出BAD,并输出较小的因子.否则输出GOOD 分析 ...
- POJ 2635 The Embarrassed Cryptographer(大数求余)
题意:给出一个大数,这个大数由两个素数相乘得到,让我们判断是否其中一个素数比L要小,如果两个都小,输出较小的那个. 分析:大数求余的方法:针对题目中的样例,143 11,我们可以这样算,1 % 11 ...
- POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)
The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...
- 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer
题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...
随机推荐
- Tilemill + tilestream + mapbox.js 自制地图
感谢Mapbox,带来了一整套完整的地图方案. 你可以把你的地图放在Mapbox的网站上.也可以使用他们提供的开源软件自己架设地图服务. Mapbox的地图方案包括web,ios和android. 不 ...
- CSS块元素与内联元素(转)
为什么<a><span>这种标签定义width,height等CSS属性时会发现完全不生效? 因为它们不是容器,它们是内联元素,不是块元素 CSS 块元素与内联元素 关键字: ...
- SQL 表连接,内联、外联、全连
内连接,join 或 inner join 两个表中符合条件的集合 外连接,left join 或 right join 以left左边或right右边的表为数据集合行,根据条件,另一侧没有的数 ...
- 随机生成A~Z的字母CharDemo
- lib32gcc1 : Depends: gcc-4.9-base (= 4.9-20140406-0ubuntu1) but 4.9.3-0ubuntu4
运行:sudo apt-get update 然后重新安装lib32gcc1
- C# lazy<T>的用法
.NET 4.0中加入了lazy<T>(懒对象),其实叫懒对象感觉不对,更应该叫延迟对象加载. 正如我们所知,对象的加载是需要消耗时间的,特别是对于大对象来说消耗的时间更多.lazy可以实 ...
- mysql版sql助记
新建用户 CREATE USER 'username'@'host' IDENTIFIED BY 'password'; [host 中 使用 % 为通配符, 匹配任意远程主机] 赋权 GRANT p ...
- [转]网络性能评估工具Iperf详解(可测丢包率)
原文链接:安全运维之:网络性能评估工具Iperf详解:http://os.51cto.com/art/201410/454889.htm 参考博文:http://linoxide.com/monito ...
- 树莓派安装ftp服务器
在树莓派安装ftp服务器,可上载\下载文件 vsftpd是开源的轻量级的常用ftp服务器. 1,安装vsftpd服务器 (约400KB)sudo apt-get install vsftpd 2,启动 ...
- POJ 1159 回文LCS滚动数组优化
详细解题报告可以看这个PPT 这题如果是直接开int 5000 * 5000 的空间肯定会MLE,优化方法是采用滚动数组. 原LCS转移方程 : dp[i][j] = dp[i - 1][j] + ...