POJ 3368 RMQ-ST
一直感觉RMQ水,没自己写过,今天写了一道题,算是完全独立写的,这感觉好久没有了...
一直以来,都是为了亚洲赛学算法,出现了几个问题:
1、学的其实只是怎么用算法,对算法的正确性没有好好理解,或者说根本没有真的理解算法并从这个算法在做修改延伸;
2、学的很不系统,没有好好对比整理各种题型,更别说好好总结;
3、貌似整天参考别人代码,很少独立做题;
操,这种急功近利的学习方式终于可以在亚洲赛没机会现场赛的时候结束了,想来也是好事
不废话了,入正题
一、RMQ原理
DP思想:dp(i,j)=min(dp(i,j-1),dp(i+2^(j-1),j-1)) 这里dp(i,j)表示以i开头长度为2^(j)的区间内的最小值,同理求最大值。说白了还是二分思想,好广泛而牛逼的二分啊。
时间复杂度分析:初始化O(nlogn),查询O(1)
其实会了动规,应该自己能发明RMQ,为什么我们没想到呢?自己学算法到底只是学怎么用算法还是在学算法本身并从中有创造?值得反思......
原理不难,但是写模版问题还是比较多的...
1、数组开多大?怎么开?
2、查询怎么做?
看代码吧,我做了注释:
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N = 200001;
int a[N], d[20];
int st[N][20]; void ReadIn(const int &n)
{
int i;
for( i=0; i < n; ++i ) scanf("%d", &a[i]);
} inline int max(const int &arg1, const int &arg2)
{
return arg1 > arg2 ? arg1 : arg2;
} void InitRMQ(const int &n)
{
int i, j; for( d[0]=1, i=1; i < 21; ++i ) d[i] = 2*d[i-1];
for( i=0; i < n; ++i ) st[i][0] = a[i];
int k = int( log(double(n))/log(2.0) ) + 1;/*这里写log(2)的话,在poj会一直CE*/
for( j=1; j < k; ++j )
for( i=0; i < n; ++i )
{
if( i+d[j-1]-1 < n )
{
st[i][j] = max(st[i][j-1],st[i+d[j-1]][j-1]);
/*st数组的设计还是很不错的,省了很多空间,
st[i][j]指的是以a[i]开头的长度为2^j的区间的最小值,
这算是离散化的思想吗???以一个点代替一个区间*/
}
else break; // st[i][j] = st[i][j-1];
}
} void Query(const int &Q)
{
int i;
for( i=0; i < Q; ++i )
{
int x, y, k; // x, y均为下标:0...n-1
scanf("%d%d", &x, &y);
k = int( log(double(y-x+1))/log(2.0) );
printf("%d\n", max(st[x][k], st[y-d[k]+1][k]));
/*这里也很巧妙。另外,因为st[y-d[k]+1][k]写成st[y-d[k]][k]WA了无数次*/
}
} int main(void)
{
int n, Q; while( scanf("%d%d", &n, &Q) != EOF )
{
ReadIn(n); InitRMQ(n); Query(Q);
}
return 0;
}
对于POJ3368
http://poj.org/problem?id=3368
样例中
-1 -1 1 1 1 1 3 10 10 10
我处理为 2,4,1,3;
就是2个-1,4个1,1个3,3个10的意思;
另外开了几个数组:
v[ ]意思是原始的数组,存的-1 -1 1 1 1 1 3 10 10 10;
val[ ]就是存的 2,4,1,3;
left[i]=j,意思是元素i在原始 数组的下标为j;right[]同理;
pos[i]=num,值为i的元素在val数组的下标。
这样就可以把v[]华为RMQ的数组了;
查询的时候需要处理,ans=max(左边界的值出现的次数,右边界的值出现的次数,除去左右的区间中的次数的最大值)
左右的区间中的次数的最大值,这个用RMQ去算,左边界的值出现的次数,右边界的值出现的次数,需要每次查询自己处理。
注意边界啊,很能容易错
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 100005;
const int HASH = 100000; int st[N][20],val[N],left[N*2],right[N*2],v[N],pos[N*2],d[N]; void init(int n)
{
int k,i,j; k=(int)(log(double(n))/log(2.0))+1;
for(d[0]=1,i=1;i<21;i++)d[i]=2*d[i-1];
for(i=0;i<n;i++)st[i][0]=val[i];
for(j=1;j<k;j++)
{
for(i=0;i<n;i++)
if(i+d[j-1]-1<n)
st[i][j]=max(st[i][j-1],st[i+d[j-1]][j-1]);
else
break;
} } void query(int x,int y)
{
int l,r,a,b,ans;
a=v[x];
b=v[y];
if(pos[b+HASH]>=pos[a+HASH]+2)
{
r=right[a+HASH];
int k=(int)(log((double)(pos[b+HASH]-pos[a+HASH]-1))/log(2.0));
ans=max(r-x+1,st[pos[a+HASH]+1][k]);
l=left[b+HASH]; ans=max(ans,y-l+1);
ans=max(ans,st[pos[b+HASH]-d[k]][k]);
printf("%d\n",ans);
}
else
if(pos[b+HASH]==pos[a+HASH]+1)
{
r=right[a+HASH];
l=left[b+HASH];
printf("%d\n",max(r-x+1,y-l+1));
}
else {
printf("%d\n",y-x+1);
} } int main()
{
//freopen("poj 3368.txt","r",stdin);
int i,l,r,n,t,b,num,q; while(scanf("%d",&n)&&n)
{
memset(val,0,sizeof(val));
memset(st,0,sizeof(st));
scanf("%d",&q); scanf("%d",&b);
val[num=0]++;
left[b+HASH]=right[b+HASH]=0;
v[0]=b;
pos[b+HASH]=num;
for(i=1;i<n;i++)
{
scanf("%d",&t);
v[i]=t;
if(t==b)
{
val[num]++;
}
else
{
right[b+HASH]=i-1;
pos[b+HASH]=num;
b=t;
left[b+HASH]=i;
val[++num]++;
pos[b+HASH]=num;
}
} init(++num);
for(i=0;i<q;i++)
{
scanf("%d%d",&l,&r);
query(l-1,r-1);
}
} return 0;
}
POJ 3368 RMQ-ST的更多相关文章
- poj 3368(RMQ模板)
题目链接:http://poj.org/problem?id=3368 题意:给出n个数和Q个询问(l,r),对于每个询问求出(l,r)之间连续出现次数最多的次数. 求解RMQ问题的算法有:搜索(比较 ...
- POJ 3368/RMQ/线段数
题目链接 /* 给出一段序列,询问[L,R]区间内最大相同数的个数. 用一个很巧妙地方法,转化成求区间内的最大值的问题. RMQ维护区间最大值. MAX处理: */ for(int i=1;i< ...
- POJ 3368 (ST表)
链接:http://poj.org/problem?id=3368 题意:给出n个连续单调不递减数,q次询问,每次询问区间(L,R)出现频率最多的数,问出现了多少次 思路:因为n个数是单调不递减的,所 ...
- poj 3368 rmq ***
题意:给出n个数和Q个询问(l,r),对于每个询问求出(l,r)之间连续出现次数最多的次数. #include<cstdio> #include<iostream> #incl ...
- poj 3368 Frequent values(RMQ)
/************************************************************ 题目: Frequent values(poj 3368) 链接: http ...
- POJ 3368 Frequent values 线段树与RMQ解法
题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...
- POJ 3368 & UVA 11235 - Frequent values
题目链接:http://poj.org/problem?id=3368 RMQ应用题. 解题思路参考:http://blog.csdn.net/libin56842/article/details/4 ...
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
- NYOJ 119 士兵杀敌(三) RMQ ST
NYOJ 119 士兵杀敌(三) RMQ ST 题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119 思路: ST在线 预处理O(nlog ...
随机推荐
- 经验:Ubuntu 登陆 L2TP VPN
Ubuntu Linux 操作系统默认支持PPTP协议的VPN登陆,但是随着网络环境的复杂化,我们需要使用L2TP协议的VPN登陆,下面,我们只需要简单的几条命令即可登陆L2TP协议的VPN. ...
- python使用get在百度搜索并保存第一页搜索结果
python使用get在百度搜索并保存第一页搜索结果 作者:vpoet mail:vpoet_sir@163.com 注:随意copy,不用在意我的感受 #coding:utf-8 import ur ...
- 【LeetCode练习题】Maximum Depth of Binary Tree
Maximum Depth of Binary Tree Given a binary tree, find its maximum depth. The maximum depth is the n ...
- 用Jfree实现条形柱状图表,java代码实现
用Jfree实现条形柱状图表,java代码实现.可经经常使用于报表的制作,代码自己主动生成后能够自由查看.能够自由配置图表的各个属性,用来达到自己的要求和目的 package test1; impor ...
- JS局部打印两种方法
所有浏览器都可以 <html> <head title=""> <title>测试打印</title> <style medi ...
- Sharepoint2010 通过 WebFeature 修改web.config
using System;using System.Runtime.InteropServices;using System.Security.Permissions;using Microsoft. ...
- react tab选项卡切换
Tab选项卡切换是个很常见也很简单的小功能,用原生js和jq去写的话可能不到20行代码就搞定so easy.但是用react去实现就没那么容易了(是自己react比较菜).由于最近在重新学习react ...
- AdapterView及其子类之四:基于ListView及SimpleAdapter实现列表
代码请见SimpleAdapterDemo.zip. 步骤如下: 1.创建主布局文件 <RelativeLayout xmlns:android="http://schemas.and ...
- spring下配置dbcp,c3p0,proxool[转]
不管通过何种持久化技术,都必须通过数据连接访问数据库,在Spring中,数据连接是通过数据源获得的.在以往的应用中,数据源一般是Web应用服务器提供的.在Spring中,你不但可以通过JNDI获取应用 ...
- inline 间距
今天看了内联元素的间距: http://blog.csdn.net/hedong37518585/article/details/6657853