Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 21037   Accepted: 5569

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意:求点1到n的最小割。

先尝试了下DFS,结果TLE。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} void DFS(int k, int dis) {
if(k == n) {
if(dis > ans) ans = dis;
return;
}
for(int i = head[k]; i != -1; i = E[i].next) {
if(!vis[E[i].v]) {
int pre = dis;
vis[E[i].v] = 1;
if(E[i].c < dis) dis = E[i].c;
DFS(E[i].v, dis);
dis = pre; vis[E[i].v] = 0;
}
}
} void solve() {
ans = 0;
memset(vis, 0, sizeof(bool) * (n + 1));
vis[1] = 1; DFS(1, inf);
printf("Scenario #%d:\n%d\n\n", cas++, ans);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

然后尝试了下Dijkstra,过了..dis数组存储当前点到源点的最小割。

#include <stdio.h>
#include <string.h> #define maxn 1010
#define maxm maxn * maxn
#define inf 0x3f3f3f3f int head[maxn], n, m, id, ans, cas = 1;
struct Node {
int v, c, next;
} E[maxm];
int dis[maxn];
bool vis[maxn]; int max(int a, int b) {
return a > b ? a : b;
} int min(int a, int b) {
return a < b ? a : b;
} void addEdge(int u, int v, int c) {
E[id].v = v; E[id].c = c;
E[id].next = head[u]; head[u] = id++; E[id].v = u; E[id].c = c;
E[id].next = head[v]; head[v] = id++;
} void getMap() {
int u, v, c; id = 0;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(int) * (n + 1));
while(m--) {
scanf("%d%d%d", &u, &v, &c);
addEdge(u, v, c);
}
} int getNext() {
int pos = -1, val = 0;
for(int i = 1; i <= n; ++i)
if(dis[i] > val && !vis[i]) {
val = dis[i]; pos = i;
}
return pos;
} void Dijkstra(int start, int end) {
memset(dis, 0, sizeof(int) * (n + 1));
dis[start] = inf;
int i, u = start, v;
while(u != -1) {
vis[u] = 1;
if(u == end) return;
for(i = head[u]; i != -1; i = E[i].next) {
if(!vis[v = E[i].v]) dis[v] = max(dis[v], min(E[i].c, dis[u]));
}
u = getNext();
}
} void solve() {
memset(vis, 0, sizeof(bool) * (n + 1));
Dijkstra(1, n);
printf("Scenario #%d:\n%d\n\n", cas++, dis[n]);
} int main() {
// freopen("stdin.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
getMap();
solve();
}
return 0;
}

POJ1797 Heavy Transportation 【Dijkstra】的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  5. 【Dijkstra】

    [摘自]:华山大师兄,推荐他的过程动画~   myth_HG 定义 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩 ...

  6. POJ 1797 Heavy Transportation (dijkstra 最小边最大)

    Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...

  7. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  8. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  9. POJ 1797 Heavy Transportation 【最大生成树的最小边/最小瓶颈树】

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

随机推荐

  1. JavaSE复习日记 : 实例化对象/构造方法和this关键字

    /* * 实例化对象/对象的构造方法/this关键字 */ /* * 实例化对象 * * 就是实例化某一个类; * 从不同角度去理解的话就是: * 1. 从人的认知角度: * 就是具体化某个东西; * ...

  2. Spring学习之Jar包功能介绍(转)

    spring.jar 是包含有完整发布模块的单个jar 包.但是不包括mock.jar, aspects.jar, spring-portlet.jar, and spring-hibernate2. ...

  3. 高效的数组去重(js)

    function uniqueArray(data){ data = data || []; var a = {}; for (var i=0; i<data.length; i++) { va ...

  4. hdu 4034 Graph floyd

    题目链接 给出一个有向图各个点之间的最短距离, 求出这个有向图最少有几条边, 如果无法构成图, 输出impossible. folyd跑一遍, 如果dp[i][j] == dp[i][k]+dp[k] ...

  5. 随机数、continue、break

    arc4random() — 返回一个随机数(无符号整型).  如果要随机一个 [a, b]范围内的整数  公式:arc4random() % (b - a + 1) + a; #include &l ...

  6. 黑马12期day01之html&css

    html注释:<!-- --> html中不支持空格.回车.制表符都会被解析成一个空格 <pre></pre>标签内以上三个会被正常解析. <font> ...

  7. table常用

    <style> table,table td { border: 1px solid #ccc; border-collapse:collapse; } </style> 注意 ...

  8. HDU 5800 To My Girlfriend(单调DP)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=5800 [题目大意] 给出一个容量上限s,f[i][j][k][l][m]表示k和l两个物品不能选,i ...

  9. CentOS6.6普通用户使用sudo命令借用root用户权限

    一.描写叙述 普通用户hadoop使用:tar -xzvf ns2.35.tar.gz命令解压文件,系统提示找不到该文件,无法打开该文件夹,于是想到使用sudo命令借用root用户的权限:sudo t ...

  10. XML DOM 节点

    来自:w3cschool菜鸟教程 在 DOM 中,XML 文档中的每个成分都是一个节点. DOM 节点 根据 DOM,XML 文档中的每个成分都是一个节点. DOM 是这样规定的: 整个文档是一个文档 ...